Chapter 22
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CHAPTER 22. LOGISTIC REGRESSION

22.1 Introduction

22.1.1 Difference between standard and logistic regression

In regular multiple-regression problems, the Y variable is assumed to have a continuous distribution with
the vertical deviations around the regression line being independently normally distributed with a mean of 0
and a constant variance 2. The X variables are either continuous or indicator variables.

In some cases, the Y variable is a categorical variable, often with two distinct classes. The X variables
can be either continuous or indicator variables. The object is now to predict the CATEGORY in which a
particular observation will lie.

For example:

e The Y variable is over-winter survival of a deer (yes or no) as a function of the body mass, condition
factor, and winter severity index.

e The Y variable is fledging (yes or no) of birds as a function of distance from the edge of a field, food
availability, and predation index.

e The Y variable is breeding (yes or no) of birds as a function of nest density, predators, and temperature.

Consequently, the linear regression model with normally distributed vertical deviations really doesn’t
make much sense — the response variable is a category and does NOT follow a normal distribution. In these
cases, a popular methodology that is used is logistic regression.

There are a number of good books on the use of logistic regression:

e Agresti, A. (2002). Categorical Data Analysis. Wiley: New York.
e Hosmer, D.W. and Lemeshow, S. (2000). Applied Logistic Regression. Wiley: New York.

These should be consulted for all the gory details on the use of logistic regression.

22.1.2 The Binomial Distribution

A common probability model for outcomes that come in only two states (e.g. alive or dead, success or failure,
breeding or not breeding) is the Binomial distribution. The Binomial distribution counts the number of times
that a particular event will occur in a sequence of observationsﬂ The binomial distribution is used when a
researcher is interested in the occurrence of an event, not in its magnitude. For instance, in a clinical trial,

IThe Poisson distribution is a close cousin of the Binomial distribution and is discussed in other chapters.
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CHAPTER 22. LOGISTIC REGRESSION

a patient may survive or die. The researcher studies the number of survivors, and not how long the patient
survives after treatment. In a study of bird nests, the number in the clutch that hatch is measured, not the
length of time to hatch.

In general the binomial distribution counts the number of events in a set of trials, e.g. the number of
deaths in a cohort of patients, the number of broken eggs in a box of eggs, or the number of eggs that hatch
from a clutch. Other situations in which binomial distributions arise are quality control, public opinion
surveys, medical research, and insurance problems.

It is important to examine the assumptions being made before a Binomial distribution is used. The
conditions for a Binomial Distribution are:

n identical trials (n could be 1);

all trials are independent of each other;

each trial has only one outcome, success or failure;

the probability of success is constant for the set of n trials. Some books use p to represent the proba-
bility of success; other books use 7 to represent the probability of successf]

the response variable Y is the the number of successesﬂin the set of n trials.

However, not all experiments, that on the surface look like binomial experiments, satisfy all the assump-
tions required. Typically failure of assumptions include non-independence (e.g. the first bird that hatches
destroys remaining eggs in the nest), or changing p within a set of trials (e.g. measuring genetic abnormali-
ties for a particular mother as a function of her age; for many species, older mothers have a higher probability
of genetic defects in their offspring as they age).

The probability of observing Y successes in 7 trials if each success has a probability p of occurring can
be computed using:
n _
p(Y =yln,p) = p(1-p)"
Y

where the binomial coefficient is computed as

n n!

Y yl(n —y)!

and where n! = n(n — 1)(n —2)...(2)(1).

ZFollowing the convention that Greek letters refer to the population parameters just like 1 refers to the population mean.

3There is great flexibility in defining what is a success. For example, you could count either the number of successful eggs that hatch
or the number of eggs that failed to hatch in a clutch. You will get the same answers from the analysis after making the appropriate
substitutions.
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CHAPTER 22. LOGISTIC REGRESSION

For example, the probability of observing Y = 3 eggs hatch from a nest with n = 5 eggs in the clutch if
the probability of success p = .2 is

5

X ) (2)% (1 —.2)°7% = 0512

Fortunately, we will have little need for these probability computations. There are many tables that tabulate
the probabilities for various combinations of n and p — check the web.

There are two important properties of a binomial distribution that will serve us in the future. If YV is
Binomial(n, p), then:

e E[Y]=np

e V[Y] = np(1 — p) and standard deviation of Y is \/np(1 — p)

For example, if n = 20 and p = .4, then the average number of successes in these 20 trials is E[Y] = np =
20(.4) = 8.

If an experiment is observed, and a certain number of successes is observed, then the estimator for the

success probability is found as:
Y
b=
n
For example, if a clutch of 5 eggs is observed (the set of trials) and 3 successfully hatch, then the estimated
proportion of eggs that hatch is p = % = .60. This is exactly analogous to the case where a sample is drawn

from a population and the sample average Y is used to estimate the population mean /.

22.1.3 Odds, risk, odds-ratio, and probability

The odds of an event and the odds ratio of events are very common terms in logistic contexts. Consequently,
it is important to understand exactly what these say and don’t say.

The odds of an event are defined as:

P(event)  P(event)

Odd t) = =
s(event) P(not event) 1 — P(event)

The notation used is often a colon separating the odds values. Some sample values are tabulated below:
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CHAPTER 22. LOGISTIC REGRESSION

Probability Odds
.01 1:99

1 1:9

5 1:1

.6 640r32o0rl.5

. 9:1

.99 99:1

For very small or very large odds, the probability of the event is approximately equal to the odds. For
example if the odds are 1:99, then the probability of the event is 1/100 which is roughly equal to 1/99.

The odds ratio (OR) is by definition, the ratio of two odds:
P(A)
odds(A) 1—P(A)

ORA vs. B — oddS(B) = lf’](DBE)B)

For example, of the probability of an egg hatching under condition A is 1/10 and the probability of an egg
hatching under condition B is 1/20, then the odds ratio is OR = (1 : 9)/(1 : 19) = 2.1 : 1. Again for very
small or very larger odds, the odds ratio is approximately equal to the ratio of the probabilities.

An odds ratio of 1, would indicate that the probability of the two events is equal.

In many studies, you will hear reports that the odds of an event have doubled. This give NO information
about the base rate. For example, did the odds increase from 1:million to 2:million or from 1:10 to 2:10.

It turns out that it is convenient to model probabilities on the log-odds scale. The log-odds (LO), also
known as the logit, is defined as:

P(A) >

logit(A) = loge(odds(A)) = loge <1_p(A)

We can extend the previous table, to compute the log-odds:

Probability Odds  Logit
.01 1:99 —4.59

1 1.9 —-2.20

1:1 0

.6 6:4o0r3:2orl5 41

. 9:1 2.20

.99 99:1 4.59

Notice that the log-odds is zero when the probability is .5 and that the log-odds of .01 is symmetric with
the log-odds of .99.
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CHAPTER 22. LOGISTIC REGRESSION

It is also easy to go back from the log-odds scale to the regular probability scale in two equivalent ways:

elog-odds 1

rp= 1+ elog-odds = 14+ e—log-odds

Notice the minus sign in the second back-translation. For example, a LO = 10, translates to p = .9999; a
LO = 4 translates to p = .98; a LO = 1 translates to p = .73; etc.

22.1.4 Modeling the probability of success

Now if the probability of success was the same for all sets of trials, the analysis would be trivial: simply
tabulate the total number of successes and divide by the total number of trials to estimate the probability of
success. However, what we are really interested in is the relationship of the probability of success to some
covariate X such as temperature, or condition factor.

For example, consider the following (hypothetical) example of an experiment where various clutches of

bird eggs were found, and the number of eggs that hatched and fledged were measured along with the height
the nest was above the ground:
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Height Clutch Size Fledged D

2.0 4 0 0.00
3.0 3 0 0.00
25 5 0 0.00
33 3 2 0.67
4.7 4 1 025
3.9 2 0 0.00
5.2 4 2 050
10.5 5 5 1.00
4.7 4 2 050
6.8 5 3 0.60
7.3 3 3 1.00
8.4 4 3 075
9.2 3 2 0.67
8.5 4 4 1.00
10.0 3 3 1.00
12.0 6 6 1.00
15.0 4 4 1.00
12.2 3 3 1.00
13.0 5 5 1.00
12.9 4 4 1.00

Notice that the probability of a fledging seems to increase with height above the grounds (potentially
reflecting distance from predators?).

We would like to model the probability of success as a function of height. As a first attempt, suppose
that we plot the estimated probability of success (p) as a function of height and try and fit a straight line to
the plotted points.

The Analyze->Fit Y-by-X platform was used, and p was treated as the Y variable and Height as the X
variable:
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CHAPTER 22. LOGISTIC REGRESSION

1.25

1.00

0 5 10 15

E| Linear Fit

¥ Linear Fit

p-hat = -0.013936 + 0.0852271 Height
e

This procedure is not entirely satisfactory for a number of reasons:

e The data points seem to follow an S-shaped relationship with probabilities of success near O at lower
heights and near 1 at higher heights.

e The fitted line gives predictions for the probability of success that are more than 1 and less than O
which is impossible.

e The fitted line cannot deal properly with the fact that the probability of success is likely close to 0%
for a wide range of small heights and essentially close to 100% for a wide range of taller heights.

e The assumption of a normal distribution for the deviations from the fitted line is not tenable as the p
are essentially discrete for the small clutch sizes found in this experiment.

e While not apparent from this graph, the variability of the response changes over the different parts
of the regression line. For example, when the true probability of success is very low (say 0.1), the
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CHAPTER 22. LOGISTIC REGRESSION

standard deviation in the number fledged for a clutch with 5 eggs is found as 1/5(.1)(.9) = .67 while
the standard deviation of the number of fledges in a clutch with 5 eggs and the probability of success
of 0.5 is 4/5(.5)(.5) = 1.1 which is almost twice as large as the previous standard deviation.

For these (and other reasons), the analysis of this type of data are commonly done on the log-odds (also
called the logit) scale. The odds of an event is computed as:

opps = P
1-p

and the log-odds is found as the (natural) logarithm of the odds:

This transformation converts the 0-1 scale of probability to a —oo — oo scale as illustrated below:

p LO
0.001 -6.91
0.01 -4.60
0.05 -2.94
0.1 -2.20
02 -1.39
03 -0.85
04 -041
0.5 0.00
0.6 041
0.7 0.85
0.8 139
09 220
095 294
099 4.60
0999 691

Notice that the log-odds scale is symmetrical about 0, and that for moderate values of p, changes on the
p-scale have nearly constant changes on the log-odds scale. For example, going from .5 — .6 — .7 on the
p-scale corresponds to moving from 0 — .41 — .85 on the log-odds scale.

It is also easy to go back from the log-odds scale to the regular probability scale:
el© 1

T 14el0 14e L0

p
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CHAPTER 22. LOGISTIC REGRESSION

For example, a LO = 10, translates to p = .9999; a LO = 4 translates to p = .98; a LO = 1 translates to
p = .73; etc.

We can now return back to the previous data. At first glance, it would seem that the estimated log-odds

is simply estimated as:
L0 = log ( P A)
l—-p
but this doesn’t work well with small sample sizes (it can be shown that the simple logit function is biased)
or when values of p close to 0 or 1 (the simple logit function hits +00). Consequently, in small samples or
when the observed probability of success is close to O or 1, the empirical log-odds is often computed as:

— np+.5 p+.5/n
LOem irical = 1 P =1 -
pirical =108 (n(lp)+.5) Og<1p+.5/n

We compute the empirical log-odds for the hatching data:

Height Clutch Fledged  p  LOepm,

2.0 4 0 0.00 -2.20
3.0 3 0 0.00 -1.95
25 5 0 0.00 -2.40
33 3 2 0.67 0.51
4.7 4 1 025 -0.85
3.9 2 0 0.00 -1.61
5.2 4 2 050 0.00
10.5 5 5 1.00 2.40
4.7 4 2 050 0.00
6.8 5 3 0.60 0.34
7.3 3 3 1.00 1.95
8.4 4 3 075 0.85
9.2 3 2 0.67 0.51
8.5 4 4 1.00 2.20
10.0 3 3 1.00 1.95
12.0 6 6 1.00 2.56
15.0 4 4 1.00 2.20
12.2 3 3 1.00 1.95
13.0 5 5 1.00 2.40
12.9 4 4 1.00 2.20

and now plot the empirical log-odds against height:
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log-odds

empirica

0 5 10 15

E| Limear Fit

¥ Linear Fit
empirical log-odds = -2.230869 + 0.3714712 Height

The fit is much nicer, the relationship has been linearized, and now, no matter what the prediction, it can
always be translated back to a probability between 0 and 1 using the inverse transform seen earlier.

22.1.5 Logistic regression

But this is still not enough. Even on the log-odds scale the data points are not normally distributed around
the regression line. Consequently, rather than using ordinary least-squares to fit the line, a technique called
generalized linear modeling is used to fit the line.

In generalized linear models a method called maximum likelihood is used to find the parameters of the
model (in this case, the intercept and the regression coefficient of height) that gives the best fit to the data.
While details of maximum likelihood estimation are beyond the scope of this course, they are closely related
to weighted least squares in this class of problems. Maximum Likelihood Estimators (often abbreviated as
MLESs) are, under fairly general conditions, guaranteed to be the “best” (in the sense of having smallest
standard errors) in large samples. In small samples, there is no guarantee that MLEs are optimal, but in
practice, MLEs seem to work well. In most cases, the calculations must be done numerically — there are no
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CHAPTER 22. LOGISTIC REGRESSION

simple formulae as in simple linear regressionE]

In order to fit a logistic regression using maximum likelihood estimation, the data must be in a standard
format. In particular, both success and failures must be recorded along with a classification variable that
is nominally scaled. For example, the first clutch (at 2.0 m) will generate two lines of data — one for the
successful fledges and one for the unsuccessful fledges. If the count for a particular outcome is zero, it can
be omitted from the data table, but I prefer to record a value of 0 so that there is no doubt that all eggs were
examined and none of this outcome were observed.

A new column was created in JMP for the number of eggs that failed to fledge, and after stacking the
revised dataset, the dataset in JMP that can be used for logistic regression looks likeﬂ

4Other methods that are qute popular are non-iterative weighted least squares and discriminant function analysis. These are beyond
the scope of this course.

5 This stacked data is available in the eggsfledge2.jmp dataset available from the Sample Program Library athttp: //www.stat .
sfu.ca/~cschwarz/Stat-650/Notes/MyPrograms.
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£I5E| Clutch
| Height | Size Qutcome | Count
1 2.0 4 | Fledged 0
2 2.0 4 | not fledged 4
3 3.0 3 |Fledged 0
4 3.0 3 | not fledged 3
5 2.5 5 | Fledged 0
6 2.5 5 | not fledged 5
7 3.3 3 |Fledged 2
8 3.3 3 | not fledged 1
9 4.7 4 | Fledged 1
10 4.7 4 | not fledged 3
11 3.9 2 |Fledged 0
12 3.9 2 | not fledged 2
13 5.2 4 |Fledged 2
14 5.2 4 | not fledged 2
15 10.5 5 | Fledged 3
16 10.5 5 | not fledged 0
17 4.7 4 | Fledged 2
18 4.7 4 | not fledged 2
19 6.8 5 | Fledged 5
20 6.8 5 | not fledged 0
21 7.3 3 |Fledged 3
22 7.3 3 | not fledged 0
23 8.4 4 | Fledged 4
24 8.4 4 | not fledged 0
25 9.2 3 |Fledged 3
26 9.2 3 | not fledged 0
27 8.5 4 |Fledged 4
28 8.5 4 | not fledged 0
29 10.0 3 |Fledged 3
30 10.0 3 | not fledged 0
31 12.0 6 | Fledged 6
32 12.0 6 | not fledged 0
33 15.0 4 | Fledged 4
34 15.0 4 | not fledged 0
35 12.2 3 |Fledged 3
36 12.2 3 | not fledged 0
37 13.0 5 | Fledged 5
38 13.0 5 | not fledged 0
39 12.9 4 | Fledged 4
40 12.9 4 | not fledged 0
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CHAPTER 22. LOGISTIC REGRESSION

The Analyze->Fit Y-by-X platform is used to launch simple logistic regression:

8o Report: Fit ¥ by X - Contextual
Distribution of ¥ for each X. Modeling types determine analysis.
Select Columns Cast Selected Columns into Roles Action
Al Height (Y, Response )| ik Outcome
Al log-odds(p) —
45
A Clutch Size
il Outcome .
4 Count ¥, Factor A I-_imght
PiEs
‘ w u u
' : optional

Bivariate Oneway

r
all ﬂ s (
Logistic Contingency

Weight optional Numeric

Freqg ) Count

Note that the Outcome is the actual Y variable (and is nominally scaled) while the Count column simply
indicates how many of this outcome were observed. The X variable is Height as before. JMP knows this is
a logistic regression by the combination of a nominally or ordinally scaled variable for the Y variable, and a
continuously scaled variable for the X variable as seen by the reminder at the left of the platform dialogue
box.

This gives the output:
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CHAPTER 22. LOGISTIC REGRESSION

¥ [~/ Logistic Fit of Outcome By Height
1.00
MNot-fledged |
0.757
) . N
E
S 0.507
=
o
Fledged
0.257
0.00 T .| ' T T T
0 5 10 15
Height
Freq: Count
¥ Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 25.490820 1 50.98164 <, 0001
Full 24, 157285
Reduced 49.648105
RSquare (L) 0.5134
Observations (or Sum Wgts) 78

Converged by Gradient
¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSqg
Intercept -4.0323313 0.9839532 16.79 <.0001*
Height 0.72292857 0.1618741 19.95 <.0001*
For log odds of Fledged/Not-fledged y

The first point to note is that most computer packages make arbitrary decisions on what is a “success” and
what is a “failure” when fitting the logistic regression. It is important to always look at the output carefully
to see what has been defined as a success. In this case, at the bottom of the output, JMP has indicated that
fledged is considered as a “success” and not fledged as a “failure”. If it had reversed the roles of these two
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categories, everything would be “identical” except reversed appropriately.

Second, rather bizarrely, the actual data points plotted by JMP really don’t any meaning! According
the JMP help screens:

Markers for the data are drawn at their x-coordinate, with the y position jittered randomly within
the range corresponding to the response category for that row.

So if you do the analysis on the exact same data, the data points are jittered and will look different even
though the fit is the same. The explanation in the JMP support pages on the web stateﬂ

The exact vertical placement of points in the logistic regression plots (for instance, on pages
308 and 309 of the JMP User’s Guide, Version 2, and pages 114 and 115 of the JMP Statistics
and Graphics Guide, Version 3) has no particular interpretation. The points are placed midway
between curves so as to assure their visibility. However, the location of a point between a
particular set of curves is important. All points between a particular set of curves have the same
observed value for the dependent variable. Of course, the horizontal placement of each point is
meaningful with respect to the horizontal axis.

This is rather unfortunate, to say the least! This means that the user must create nice plot by hand. This plot
should plot the estimated proportions as a function of height with the fitted curve then overdrawn.

Fortunately, the fitted curves are correct (whew). The curves presented doesn’t look linear only because
JMP has transformed back from the log-odds scale to the regular probability scale. A linear curve on the
log-odds scale has a characteristic “S” shape on the regular probability scale with the ends of the curve
flattening out a 0 and 1. Using the Cross Hairs tool, you can see that a height of 5 m gives a predicted
probability of success (fledged) of .57; by 7 m the estimated probability of success is almost 100%.

The table of parameter estimates gives the estimated fit on the log-odds scale:
LO = —4.03 + .72(Height)

Substituting in the value for Height = 5, gives an estimated log-odds of —.43 which on the regular proba-
bility scale corresponds to .394 as seen before from using the cross hairs.

The coefficient associated with height is interpreted as the increase in log-odds of fledging when height
is increased by 1 m.

As in simple regression, the precision of the estimates is given by the standard error. An approxi-
mate 95% confidence interval for the coefficient associated with height is found in the usual fashion, i.e.
estimate 2seﬂ This confidence interval does NOT include 0; therefore there is good evidence that the
probability of fledging is not constant over the various heights.

Shttp://www. jmp.com/support/techsup/notes/001897.html

7Tt is not possible to display the 95% confidence intervals in the Analyze->Fit Y-by-X platform output by right clicking in the table
(don’t ask me why not). However, if the Analyze->Fit Model platform is used to fit the model, then right-clicking in the Estimates table
does make the 95% confidence intervals available.
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Similarly, the p-value is interpreted in the same way — how consistent is the data with the hypothesis
of NO effect of height upon the survival rate. Rather than the #-fest seen in linear regression, maximum
likelihood methods often constructs the test statistics in a different fashion (called x? likelihood ratio tests).
The test statistic is not particularly of interest — only the final p-value matters. In this case, it is well below
a = .05, so there is good evidence that the probability of success is not constant across heights. As in all
cases, statistical significance is no guarantee of biological relevance.

In theory, it is possible to obtain prediction intervals and confidence intervals for the MEAN probability
of success at new values of X — JMP does not provide these in the Analyze->Fit Y-by-X platform with
logistic regression. It does do Inverse Predictions and can give confidence bounds on the inverse prediction
which require the confidence bounds to be computed, so it is a mystery to me why the confidence intervals
for the mean probability of success at future X values are not provided.

The Analyze->Fit Model platform can also be used to fit a logistic regression in the same way:

8o Fit Model
¥ [~ Model Specification
Select Columns Pick Role Variables Personalit}: ‘Nominal Logistic =

optional

Ap { Help ) { Run Model )
A Clutch Size =

i ) aontional Numeri —
tgglljcnc;me ( Weight ) optional Numeric ERemove)

A Height -’ ¥ 1 dk Qutcome
Al log-oddsip) ~—

Freq Count

 o——

( By ] optional

Construct Model Effects

l': Add \,-l Height

£ Cross b
& Nest b

Macros ¥

Degree
Attributes [=]
Transform [=]

! No Intercept
P

Be sure to specify the Y variable as a nominally or ordinally scaled variable; the count as the frequency
variable; and the X variables in the usual fashion. The Analyze->Fit Model platform automatically switches
to indicate logistic regression will be run.

The same information as previously seen is shown again. But, you can now obtain 95% confidence
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CHAPTER 22. LOGISTIC REGRESSION

intervals for the parameter estimates and there are additional options under the red-triangle pop-down menu.
These features will be explored in more detail in further examples.

Lastly, the Analyze->Fit Model platform using the Generalized Linear Model option in the personality
box in the upper right corner, also can be used to fit this model. Specify a binomial distribution with the
logit link. You get similar results with more goodies under the red-triangles such as confidence intervals for
the MEAN probability of success that can be saved to the data table, residual plots, and more. Again, these
will be explored in more details in the examples.

22.2 Data Structures

There are two common ways in which data can be entered for logistic regression, either as individual obser-
vations or as grouped counts.

If individual data points are entered, each line of the data file corresponds to a single individual. The
columns will corresponds to the predictors (X) that can be continuous (interval or ratio scales) or classifica-
tion variables (nominal or ordinal). The response (Y') must be a classification variable with any two possible
outcomeﬂ Most packages will arbitrarily choose one of these classes to be the success — often this is the
first category when sorted alphabetically. I would recommend that you do NOT code the response variable
as 0/1 — it is far to easy to forget that the 0/1 correspond to nominally or ordinally scaled variables and not
to continuous variables.

As an example, suppose you wish to predict if an egg will hatch given the height in a tree. The data
structure for individuals would look something like:

Egg Height Outcome

1 10  hatch
2 15 not hatch
3 5 hatch
4 10 hatch
5 10 not hatch

Notice that even though three eggs were all at 10 m height, separate data lines for each of the three eggs
appear in the data file.

In grouped counts, each line in the data file corresponds to a group of events with the same predictor
(X) variables. Often researchers record the number of events and the number of successes in two separate
columns, or the number of success and the number of failures in two separate columns. This data must be
converted to two rows per group - one for the success and one for the failures with one variable representing

8 In more advanced classes this restriction can be relaxed.
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the outcome and a second variable representing the frequency of this event. The outcome will be the Y
variable, while the count will be the frequency variable

For example, the above data could be originally entered as:

Height Hatch Not Hatch

10 2 1
15 0 1
5 1 0

but must be translated (e.g. using the Tables — Stack command) to:

Height  Outcome Count

10 Hatch 2
10 Not Hatch 1
15 Hatch 0
15 Not Hatch 1
5 Hatch
5 Not Hatch 0

While it is not required that counts of zero have data lines present, it is good statistical practice to remind
yourself that you did look for failures, but failed to find any of them.

22.3 Assumptions made in logistic regression

Many of the assumptions made for logistic regression parallel those made for ordinary regression with ob-
vious modifications.

1. Check sampling design. In these course notes it is implicitly assumed that the data are collected either
as simple random sample or under a completely randomized design experiment. This implies that the
units selected must be a random sample (with equal probability) from the relevant populations or
complete randomization during the assignment of treatments to experimental units. The experimental
unit must equal the observational unit (no pseudo-replication), and there must be no pairing, blocking,
or stratification.

It is possible to generalize logistic regression to cases where pairing, blocking, or stratification took
place (for example, in case-control studies), but these are not covered during this course.

9Refer to the section on Poisson regression for an alternate way to analyze this type of data where the count is the response variable.
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Common ways in which assumption are violated include:

e Collecting data under a cluster design. For example, class rooms are selected at random from
a school district and individuals within a class room are then measured. Or herds or schools of
animals are selected and all individuals within the herd or school are measured.

e Quota samples are used to select individuals with certain classifications. For example, exactly
100 males and 100 females are sampled and you are trying to predict sex as the outcome measure.

2. No outliers. This is usually pretty easy to check. A logistic regression only allows two categories
within the response variables. If there are more than two categories of responses, this may represent a
typographical error and should be corrected. Or, categories should be combined into larger categories.

It is possible to generalize logistic regression to the case of more than two possible outcomes. Please
contact a statistician for assistance.

3. Missing values are MCAR. The usual assumption as listed in earlier chapters.

4. Binomial distribution. This is a crucial assumption. A binomial distribution is appropriate when
there is a fixed number of trials at a given set of covariates (could be 1 trial); there is constant proba-
bility of “success” within that set of trials; each trial is independent; and the number of trials in the n
successes is measured.

Common ways in which this assumption is violated are:

e Items within a set of trials do not operate independently of each other. For example, subjects
could be litter mates, twins, or share environmental variables. This can lead to over- or under-
dispersion.

e The probability of success within the set of trials is not constant. For example, suppose a set of
trials is defined by weight class. Not everyone in the weight class is exactly the same weight and
so their probability of “success” could vary. Animals all don’t have exactly the same survival
rates.

e The number of trials is not fixed. For example, sampling could occur until a certain number of
success occur. In this case, a negative binomial distribution would be more appropriate.

5. Independence among subjects. See above.

22.4 Example: Space Shuttle - Single continuous predictor

In January 1986, the space shuttle Challenger was destroyed on launch. Subsequent investigations showed
that an O-ring, a piece of rubber used to seal two segments of the booster rocket, failed, allowing highly
flammable fuel to leak, light, and destroy the shipm

As part of the investigation, the following chart of previous launches and the temperature at which the
shuttle was launched was presented:

10 Refer tohttp://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster,
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The raw data is available in the JMP file spaceshuttleoring.jmp available from the Sample Program Library
athttp://www.stat.sfu.ca/~cschwarz/Stat-650/Notes/MyPrograms.

Notice that the raw data has a single line for each previous launch even though there are multiple launches

at some temperatures. The X variable is temperature and the Y variable is the outcome — either f for failure
of the O-ring, or OK for a launch where the O-ring did not fail.
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With the data in a single observation mode, it is impossible to make a simple plot of the empirical logistic
function. If some of the temperatures were pooled, you might be able to do a simple plot.

The Analyze->Fit Y-by-X platform was used and gave the following results:

¥ [~ Logistic Fit of O-ring Qutcome By Temperature

1.00

O-ring Outcome
= o
LA =
9 1

o
Pl
LA

]

0.00

Maodel
Difference
Full
Reduced

Rsquare (U)

Term
Intercept

30 55

&0 65

Temperature

¥ Whole Model Test

-LogLikelihood

Temperature

For log odds of f/ok
————————————————

2.972089
11.515225
14487294

Observations (or Sum Wgts)
Converged by Gradient
¥ Parameter Estimates

Estimate Std Error ChiSgquare Prob>ChiSq
108753321 5.7031291 3.64 0.0565
-0.1713202 0.0834419 4.22 0.0401*

70 75 B0 B85

DF ChiSquare Prob>ChiSq
1 5.944137 0.0148*

0.2052
24

First notice that JMP treats a failure f as a “success”, and will model the probability of failure as a function
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of temperature. This is why it is important that you examine computer output carefully to see exactly what
a package is doing.

The graph showing the fitted logistic curve must be interpreted carefully. While the plotted curve is
correct, the actual data points are randomly placed - groan — see the notes in the previous section.

The estimated model is:
lgg\it(failure) = 10.875 — .17(temperature)

So, the log-odds of failure decrease by .17 (se .083) units for every degree (°F) increase in launch tempera-
ture. Conversely, the log-odds of failure increase by .17 by every degree (°F) decrease in temperature.

The p-value for no effect of temperature is just below o = .05.

Using the same reasoning as was done for ordinary regression, the odds of failure increase by a factor of
e'!” = 1.18, i.e. almost a 18% increase per degree drop.

To predict the failure rate at a given temperature, a two stage-process is required. First, estimate the

log-odds by substituting in the X values of interest. Second, convert the estimated log-odds to a probability
K LO(x) 1
using p(z) = 1ieLO(m) = {fe—LOo@ -

The actual launch was at 32°F. While it is extremely dangerous to try and predict outside the range
of observed data, the estimated log-odds of failure of the O-ring are 10.875 — .17(32) = 5.43 and then

43

p(failure) = oz = .99+, i.e. well over 99%!

It is possible to find confidence bounds for these predictions — the easiest way is to create some “dummy”’
rows in the data table corresponding to the future predictions with the response variable left blank. Use
JMP’s Exclude Rows feature to exclude these rows from the model fit. Then use the red-triangle to same
predictions and confidence bounds back to the data table.

The Analyze->Fit Model platform gives the same results with additional analysis options that we will
examine in future examples.

The Analyze->Fit Model platform using the Generalized Linear Model option also gives the same results

with additional analysis options. For example, it is possible to compute confidence intervals for the predicted
probability of success at the new X . Use the pop-down menu beside the red-triangle:
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806

spaceshuttleoring: Fit Model

v M anaralizad | inaar Madal
,  Custom Test...

Contrast

Covariance of Estimates
Correlation of Estimates
Profilers
Diagnostic Plots
Save Columns

R A

[ g

Goodness Of Fit Statistic

Pearson 2

Deviance 2
¥ Effect Tests

Source DF Chisgua

Temperature 1 5.944

Fit

:

v Mean Confidence Interval

s

Prediction Formula
v Predicted Values

e om i emioz_

Save Indiv Confid Limits
Deviance Residuals

Pearson Residuals

Studentized Deviance Residuals
Studentized Pearson Residuals

The predicted values and 95% confidence intervals for the predicted probability are stored in the data table:

1622

(©?2012 Carl James Schwarz

December 21, 2012



CHAPTER 22. LOGISTIC REGRESSION

(=] O-ring Pred Lower 95% |Upper 95%
—_ | Temperature | Outcome |O-ring | Mean O- Mean O-
2 56| f 0.78 0.28 0.97
3 57| f 0.75 0.28 0.96
4 63 | ok 0.52 0.23 0.80
5 66 | ok 0.39 0.18 0.65
3] 67 | ok 0.35 0.16 .60
7 67 | ok 0.35 0.16 Q.60
B 67 | ok 0.35 0.16 0.60
9 68 | ok 0.32 0.14 0.56
10 69 | ok 0.28 0.12 0.52
11 70| ok 0.25 0.10 0.49
12 70|f 0.25 0.10 0.49
13 70|f 0.25 0.10 0.49
14 70|f 0.25 0.10 0.49
15 72 | ok 0.19 0.07 0.44
16 73 ok 0.16 0.05 0.42
17 75 ok 0.12 0.03 0.39
18 75|f 0.12 0.03 0.39
19 76| ok 0.10 0.02 0.38
20 76 | ok 0.10 0.02 0.38
21 78 ok 0.08 0.01 0.36
Ly 79| ok 0.07 0.01 0.35
23 80 ok 0.06 0.01 0.35
24 81| ok 0.05 Q.00 0.34

These are found by finding the predicted log-odds and a 95% confidence interval for the predicted log-
odds and then inverting the confidence interval endpoints in the same way as the predicted probabilities are
obtained from the predicted log-odds.

While the predicted value and the 95% confidence interval are available, for some odd reason the se of
the predicted probability is not presented — this is odd as it is easily computed. The confidence intervals are

quite wide given that there were only 24 data values and only a few failures.

It should be noted that only predictions of the probability of success and confidence intervals for the
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probability of success are computed. These intervals would apply to all future subjects that have the par-
ticular value of the covariates. Unlike the case of linear regression, it really doesn’t make sense to predict
individual outcomes as these are categories. It is sensible to look at which category is most probable and
then use this as a “guess” for the individual response, but that is about it. This area of predicting categories
for individuals is called discriminant analysis and has a long history in statistics. There are many excellent
books on this topic.

22.5 Example: Predicting Sex from physical measurements - Multi-
ple continuous predictors

The extension to multiple continuous X variables is immediate. As before there are now several predictors.
It is usually highly unlikely to have multiple observations with exactly the same set of X values, so the data
sets usually consist of individual observations.

Let us proceed by example using the Fitness data set available in the JMP sample data library. This
dataset has variables on age, weight, and measurements of performance while performing a fitness assess-

ment. In this case we will try and predict the sex of the subject given the various attributes.

As usual, before doing any computations, examine the data for unusual points. Look at pairwise plots,
the pattern of missing values, etc.

It is important that the data be collected under a completely randomized design or simple random sample.
If your data are collected under a different design, e.g. a cluster design, please see suitable assistance.

Use the Analyze->Fit Model platform to fit a logistic regression trying to predict sex from the age,
weight, oxygen consumption and run time:
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806

Fit Model

¥ [~]Model Specification
Select Calumns

Pick Role Variables

ik Name

il Sex

A Age

A Weight
A Oxy

A Runtime
Al RunPulse
A RstPulse
Al MaxPulse

Cy =

optional Numeric
optional Numeric
optional Numeric

B optional

Construct Model Effects

This gives the summary output:
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¥ [~| Generalized Linear Model Fit

Response: Sex

Modeling P(5ex=F)

Distribution: Binomial

Link: Logit

Observations (or Sum Wats) = 31
¥ Whole Model Test

Model =LoglLikelihood ChiSquare DF Prob:>Chisqg
Difference 13.3694658 26.7389 4 <.0001*
Full B.10196497

Reduced 21.4714308

Goodness Of Fit Statistic ChiSquare DF Prob=Chisqg
Pearson 12.7361 26 0.9862
Deviance 16.2039 26 0.9312

b Effect Tests
¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob=Chisg Lower CL Upper CL
Intercept  17.1846119 20.147174 0.74590 0.3B68 -22.56774 62.354625
Age -0.0263299 0.1300906 0.0411 0.8353 -0.305515 0.2417392
Weight -0.7344983 0.4282811 17.9015 <0001 -1.573929 0.1049327
Oxy 092503062 0.5786904 5.8206 0.0158* 0.1249072 2.0592637
Runtime -0.2195561 0.B181341 0.0718 0.7B87 -1.90565 14727363

First determine which category is being predicted. In this case, the sex = f category will be predicted.

The Whole Model Test examines if there is evidence of any predictive ability in the 4 predictor variable.
The p-value is very small indicating that there is predictive ability.

Because we have NO categorical predictors, the Effect Tests can be ignored for now. The Parameter
Estimates look for the marginal contribution of each predictor to predicting the probability of being a Female.
Just like in regular regression, these are MARGINAL contributions, i.e. how much would the log-odds for
the probability of being female change if this variable changed by one unit and all other variables remained
in the model and did not change. In this case, there is good evidence that weight is a good predictor (not
surprisingly), but also some evidence that oxygen consumption may be usefulE| If you look at the dot plots
for the weight for the two sexes and for the oxygen consumption for the two sexes, the two groups seem to
be separated on these variables:

"I'The output above actually appears to be a bit contradictory. The chi-square value for the effect of weight is 17 with a p-value
< .0001. Yet the 95% confidence interval for the coefficient associated with weight ranges from (—1.57 — .105) which INCLUDES
zero, and so whould not be statistically significant! It turns out that JMP has mixed two (asymptotically) equivalent methods in this
one output. The chi-square value and p-value are computed using a likelihood ratio test (a model with and without this variable is fit
and the difference in fit is measured), while the confidence intervals are computed using a Wald approximation (estimate £ 2(se)).
In small samples, the sampling distribution for an estimate may not be very symmetric or close to normally shaped and so the Wald
intervals may not perform well.
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en0e Fitness: Fit Y by X of Weight, Oxy by Sex (=]
¥ [=] Oneway Analysis of Weight By Sex ¥ [=] Oneway Analysis of Oxy By Sex
85 65
50 . ..
85 ..
2807 . " = o
8757 . g Z's0- e
% 70- ' . i o
: 45 ¥ "
65
En- 40
55 T 35 T
F M F M
Sex Sex
]

The estimated coefficient for weight is —.73. This indicates that the log-odds of being female decrease
by .73 for every additional unit of weight, all other variables held fixed. This often appears in scientific
reports as the adjusted effect of weight — the adjusted term implies that it is the marginal contribution.

Confidence intervals for the individual coefficient (for predicting the log-odds of being female) are in-
terpreted in the same way.

Just like in regular regression, collinearity can be a problem in the X values. There is no easy test for
collinearity in logistic regression in JMP, but similar diagnostics as in in ordinary regression are becoming
available.

Before dropping more than one variable, it is possible to test if two or more variables can be dropped.
Use the Custom Test options from the drop-down menu:
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806

v Ml Canaralizad | inaar Madal Fj

Contrast

Covariance of Estimates
Correlation of Estimates
Profilers

Diagnostic Plots

Save Columns

Script

Complete the boxes in a similar way as in ordinary linear regression. For example, to test if both age and
runtime can be dropped:

¥ [+|Custom Test

Test if can drop both age and runtime

Parameter
Intercept
Age
Weight

Oxy
Runtime

Click and Type Above to form hypothesis test,
( Done :} ( Add Column :) ( Help :)

which gives:
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¥ [*/Custom Test

Test if can drop both age and runtime

DF
Chisguare
Prob>Chisqg

Parameter

Intercept 0

Age 1
Weight 0

Oxy 0
Runtime 0

- 0

Value -0.02632986
5td Error 0.1300905982
Chisguare 0.0411053289
Prob=>Chisq 0.8393347461
-LogLikelinood B.1225176336
-LogLikelinood B.1470130022

2
0.0900960661
0.9559515635

o T S e R e R e |

-0.219556056
0.8181340592
0.0718411075
0.7BB6747526
B.1378855229

It appears safe to drop both variables.

Just as in regular regression, you can fit quadratic and product terms to try and capture some non-linearity
in the log-odds. This affects the interpretation of the estimated coefficients in the same way as in ordinary
regression. The simpler model involving weight and oxygen consumption, their quadratic terms and cross

product term was fit using the Analyze->Fit Model platform:
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806 Fit Model

¥ [~]Model Specification
Select Columns Pick Role Variables Personality:

Generalized Linear Model ¥

ik Name
il Sex

A Age

A Weight
A Oxy Weight optional Numeric
A Runtime

: EU"PP'TBE Freq optional Numeric Run Model
stPulse
optional Numeric Remove

Al MaxPulse
By optional

il Sex Distribution | ginomial v

Link Function L ogit v

! Owverdispersion Tests and Intervals

L

Construct Model Effects

Weight& RS
Oxy& RS
Weight*Weight
Weight*Oxy
Oxy*Oxy

Cross

=
] =z b
q (1] o
c b o
&
4

Surprisingly, the model has problems:
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¥ Whole Model Test

Model -LoglLikelihood ChiSquare DF Prob=Chisqg
Difference 14 2862258 28.5725 5 <. 0001*
Full 7. 185205

Reduced 21.4714308

Goodness Of Fit Statistic ChiSquare DF Prob=Chisqg
Pearson 11.0535 25 0.9927
Deviance 14.3704 25 0.9549

Convergence Failure: Solver Stuck On Flat Surface
Norm(Gradient) 2.83917285

Evidence of perfect fit for some data points detected, and
the Hessian matrix suggests quasi-complete separation of

the data.
Fit and results are of questionable value: Proceed with

caution.

Ironically, it is because the model is too good of a fit. It appears that you can discriminate perfectly between
men and women by fitting this model. Why does a perfect fit cause problems. The reason is that if the
p(sex = f) = 1, the log-odds is then +o0o and it is hard to get a predicted value of co from an equation

without some terms also being infinite.

If you plot the weight against oxygen consumption using different symbols for males and females, you
can see the near complete separation based on simply looking at oxygen consumption and weight without

the need for quadratic and cross products:
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¥ [~ Overlay Plot
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I’ll continue by fitting just a model with linear effects of weight and oxygen consumption as an illustra-
tion. Use the Analyze->Fit Model platform to fit this model with just the two covariates:
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¥ [~|Generalized Linear Model Fit

Response: Sex

Modeling P(Sex=F)

Distribution: Binomial

Link: Logit

Observations (or Sum Wgts) = 31
¥ Whole Model Test

Model =LogLikelihood ChiSquare DF Prob>Chisqg
Difference 13.3244178 26.0488 2 <0001~
Full B.147013

Reduced 21.4714308

Goodness Of Fit Statistic ChiSguare DF Prob>=Chisqg
Pearsan 12.8600 28 0.9935
Deviance 16.2940 28 0.9613

- Effect Tests
¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob>Chisqg Lower CL Upper CL
Intercept  12.5404079 12.771311 1.0984 0.2946 -10.48685 37.57217E
Weight -0.7607665 04280348 18.0352 <0001 -1.599715 O0Q.0781817
Oxy 0.99232555 0.5405731 14,4821 0.0001* -0.067198 2.0518489

Both covariates are now statistically significant and cannot be dropped.

The Goodness-of-fit statistic is computed in two ways (which are asymptotically equivalent), but both
are tedious to compute by hand. The Deviance of a model is a measure of how well a model performs. As
there are 31 data points, you could get a perfect fit by fitting a model with 31 parameters — this is exactly
what happens if you try and fit a line through 2 points where 2 parameters (the slope and intercept) will fit
exactly two data points. A measure of goodness of fit is then found for the model in question based on the
fitted parameters of this model. In both cases, the measure of fit is called the deviance which is simply twice
the negative of the log-likelihood which in turn is related to the probability of observing this data given the
parameter values. The difference in deviances is the deviance goodness-of-fit statistic. If the current model
is a good model, the difference in deviance should be small (this is the column labeled chi-square). There is
no simple calibration of deviancesizl, so a p-value must be found which say how large is this difference. The
p-value of .96 which indicates that the difference is actually quite small, almost 96% of the time you would
get a larger difference in deviances.

Similarly, the row labeled the Pearson goodness-of-fit is based on the same idea. A perfect fit is obtained
with a model of 31 parameters. A comparison of the observed and predicted values is found for the model
with 3 parameters. How big is the difference in fit? How unusual is it?

NOTE that for goodness-of-fit tests, you DO NOT WANT TO REJECT the null hypothesis. Hence
p-values for a goodness-of-fit test that are small (e.g. less than o = .05) are NOT good!

12 The df=31-3
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So for this model, there is no reason to be upset with the fit.

The residual plots look strange, but this is an artifact of the data:

¥ Studentized Deviance Residual by Predicted
2.0
1.5 -
M 1.0 .
-4 'E- .
N3 0.5 :
- O
o w 0.0 b
- g +
2 m-0.57 ‘s
v s
0-1.0- ‘a
-1.5- L
L]
-2.0 T | T | T T | 1 |
o 1 2 3 4 5 & 7 B 9 10
Sex Predicted

Along the bottom axis is the predicted probability of being female. Now consider a male subject. If
the predicted probability of being female is small (e.g. close to 0 because the subject is quite heavy),
then there is an almost perfect agreement of the observed response with the predicted probability. If you
compute a residual by defining a male=0 and female=1, then the residual here would be computed as

(obs — predicted)/se(predicted) = (0 — 0)/blah = 0. This corresponds to points near the (0,0) area
of the plots.

What about males whose predicted probability of being female is almost .7 (which corresponds to ob-
servation 15). This is a poor prediction. and the residual is computed as (0 — .7)/se(predicted) which is

approximately equal to (0 — .7)/+/.7(.3) ~ —1.52 with some further adjustment to compute the se of the
predicted value. This corresponds to the point near (.7, -1.5).

On the other hand, a female with a predicted probability of being female will have a residual equal to

approximately (1 —.7)/4/.7(.3) = .65.

Hence the two lines on the graph correspond to males and female respectively. What you want to see is
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this two parallel line system, particularly with few males near the probability of being female close to 1, and
few females with probability of being female close to 0.

There are four possible residual plots available in JMP — they are all based on a similar procedure with
minor adjustments in the way they compute a standard error. Usually, all four plots are virtually the same —
anomalies among the plots should be investigated carefully.

22.6 Examples: Lung Cancer vs. Smoking; Marijuana use of stu-
dents based on parental usage - Single categorical predictor

22.6.1 Retrospect and Prospective odds-ratio

In this section, the case where the predictor (X) variable is also a categorical variable will be examined. As
seen in multiple linear regression, categorical X variables are handled by the creation of indicator variables.
A categorical variable with k classes will generate k£ — 1 indicator variables. As before, there are many ways
to define these indicator variables and the user must examine the computer software carefully before using
any of the raw estimated coefficients associated with a particular indicator variable.

It turns out that there are multiple ways to analyze such data — all of which are asymptotically equivalent.
Also, this particular topic is usually divided into two sub-categories - problems where there are only two
levels of the predictor variables and cases where there are three or more levels of the predictor variables.
This division actually has a good reason — it turns out that in the case of 2 levels for the predictor and 2
levels for the response variable (the classic 2 x 2 contingency table), it is possible to use a retrospective
study and actually get valid estimates of the prospective odds ratio.

For example, suppose you were interested in the looking at the relationship between smoking and lung
cancer. In a prospective study, you could randomly select 1000 smokers and 1000 non-smokers for their
relevant populations and follow them over time to see how many developed lung cancer. Suppose you
obtained the following results:

Cohort Lung Cancer No lung cancer
Smokers 100 900
Non-smoker 10 990

Because this is a prospective study, it is quite valid to say that the probability of developing lung cancer
if you are a smoker is 100/1000 and the probability of developing lung cancer if you are not a smoker is
10/1000. The odds of developing cancer if you are smoker are 100:900 and the odds of developing cancer
if you are non-smoker are 10:990. The odds ratio of developing cancer of a smoker vs. a non-smoker is then

100 : 900

LO)gps Ng = —— " =11:1
OR(LC)s vs. Ns 10 : 990
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But a prospective study takes too long, so an alternate way of studying the problem is to do a retrospective
study. Here samples of 1000 people with lung cancer, and 1000 people without lung cancer are selected at
random from their respective populations. For each subject, you determine if they smoked in the past.
Suppose you get the following results:

Lung Cancer Smoker Non-smoker
yes 810 190
no 280 720

Now you can’t directly find the probability of lung cancer if you are smoker. It is NOT simply 810/(810+
280) because you selected equal number of smokers and non-smokers while less than 30% of the population
generally smokes. Unless that proportion is known, it is impossible to compute the probability of getting
lung cancer if you are a smoker or non-smoker directly, and so it would seem that finding the odds of lung
cancer would be impossible.

However, not all is lost. Let P(smoker) represent the probability that a randomly chosen person is a
smoker; then P(non-smoker) = 1 — P(smoker). Bayes’ RuleE]

P (smoker | lung cancer) P (lung cancer)

P (smoker)
P (smoker | no lung cancer) P (no lung cancer)

P (smoker)

P (non-smoker | lung cancer) P (lung cancer)

P (non-smoker)
P (non-smoker | no lung cancer) P(no lung cancer)

P (non-smoker)

P (lung cancer | smoker) =

(

(no lung cancer | smoker) =
(lung cancer | non-smoker) =
(

P
P
P

no lung cancer | non-smoker) =

This doesn’t appear to helpful, as P(smoker) or P(non-smoker) is unknown. But, look at the odds-ratio
of getting lung cancer of a smoker vs. a non-smoker:

OR(LC) __ ODDS((lung cancer if smoker)
Svs. NS — ODDSﬂlung cancer if non-smoker)
P (lung cancer | smoker)
___ P(nolung cancer | smoker)
= P {lung carncer | non-smoker)
B (o lung cancer | non-smoker)

If you substitute in the above expressions, you find that:

P (smoker | lung cancer)
__ P(smoker | no lung cancer)
OR(LC)S vs NS — P (non-smoker | lung cancer)
P (non-smoker | no lung cancer)

which can be computed from the retro-spective study. Based on the above table, we obtain

(o]

1
OR(LC)sysns = 255 =11:1
2

Qlo

5
[e=}

This symmetric in odds-ratios between prospective and retrospective studies only works in the 2x2 case
for simple random sampling.

3See http://en.wikipedia.org/wiki/Bayes_rule
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22.6.2 Example: Parental and student usage of recreational drugs

A study was conducted where students at a college were asked about their personal use of marijuana and
if their parents used alcohol and/or marijuanam The following data is a collapsed version of the table that
appears in the report:

Parental  Student Usage

Usage Yes No
Yes 125 85
No 94 141

This is a retrospective analysis as the students are interviewed and past behavior of parents is recorded.

The data are entered in JMP in the usual format. There will be four lines, and three variables correspond-
ing to parental usage, student usage, and the count.

| marijuana-short.jmp

Parental
usage Student usage

yes no

no no

yes
no

Start using the Analyze->Fit Y-by-X platform:

4“Marijuana Use in College, Youth and Society, 1979, 323-334.
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806 Report: Fit Y by X - Contextual
Distribution of ¥ for each X. Modeling types determine analysis.
_Select Columns = Casl Selected Columns into Roles = 3rfllc'cic:tn
dl, Parental usage & Y, Response ) ik, Parental usage QK
il Student usage optional
4 Count Cancel
" X, Factor ) ik Student usage
Contingency : optional

A j |¢Uﬁ] Remove
Bivariate Oneway @ optional Recall

; il (  Weight ) optional Numeric Help
Logistic Contingency I) Count
A ik of

. By ) optional

olE e

but don’t forget to specify the Count as the frequency variable. It doesn’t matter which variable is entered
as the X or Y variable. Note that JMP actually will switch from the logistic platform to the contingency
platfornffl as noted by the diagram at the lower left of the dialogue box.

The mosaic plot shows the relative percentages in each of the student usage groups:

15 Refer to the chapter on Chi-square tests.
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¥ Mosaic Plot

1.007
0.757 yes
EEG““““““‘\ |

|

Parental usage

0.257 no

0.00

no yes

Student usage

IFreq: Count

The contingency table (after selecting the appropriate percentages for display from the red-triangle pop-
down menu

16Tn my opinion, I would never display percentages to more than integer values. Displays such as 42.92% are just silly as they imply
a precision of 1 part in 10,000 but you only have 219 subjects in the first row.
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¥ [*|Contingency Table
Parental usage
Count|no yes
Row
@l no 141 85 226
3 62.39] 3761
Slyes 94 125 219
= 42,92 57.08
g 235 210 445

The contingency table approach tests the hypothesis of independence between the X and Y variable, i.e.
is the proportion of parents who use marijuana the same for the two groups of students:

Test ChiSquare Prob>ChiSq
Likelihood Ratio 17.019 <. 0001*
Pearson 16.913 <, 0001

As explained in the chapter on chi-square tests, there are two (asymptotically) equivalent ways to test this
hypothesis — the Pearson chi-square statistic and the likelihood ratio statistic. In this case, you would come
to the same conclusion.

The odds-ratio is obtained from the red-triangle at the top of the display:
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¥ B Cantinnancrv Analucic af Iil.:lren .
; ¥ Mosaic Plot
v Contingency Table L—
v Tests
Correspondence Analysis
Cochran Mantel Haenszel
Agreement Statistic
Relative Risk
Risk Difference
Odds Ratio

The ratio of the odds for one response level
hetween two factor levels, divided by the odds
or the other response level

and gives:

¥ Odds Ratio

Odds Ratio Lower 95% Upper 95%
2.205882 1.50924 1.224083

It is estimated that the odds of children using marijuana if their parents use marijuana or alcohol are about
2.2 times that of the odds of a child using marijuana for parents who don’t use marijuana or alcohol. The
95% confidence interval for the odds-ratio is between 1.51 and 3.22. In this case, you would examine if
the confidence interval for the odds-ratio includes the value of 1 (why?) to see if anything interesting is
happening.

If the Analyze->Fit Model platform is used and a logistic regression is fit:
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Weight optional Numeric

ene Fit Model
¥ [+] Model Specification
Select Columns Pick Role Variables Personality: Nominal Logistic =
ik Parental usage ¥ il Parental usage
il Student usage optional
A Count Run Model

[ Remove |

Freq Count

i

o]

ptional

Construct Model Effects

Add

Student usage

Cross
Nest

Macros

Attributes [=]
Transform [=]

[ No Intercept

Q
m
w0
=
1]
m

This gives the output:
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806 marijuana-short: Fit Nominal Logistic s
B ? 2@ b PN EN B
Tools

¥ [~I Nominal Logistic Fit for Parental usage
* Iteration History

Freq: Count

¥ Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSg
Difference 8.50969 1 17.01938 <, 0001*
Full 299.23819
Reduced 307.747 88
RSquare (L) 0.0277
Observations (or Sum Wgts) 445

Converged by Cradient
¥ Parameter Estimates

Term Estimate Std Error ChiSguare Prob>ChiSqg
Intercept 0.1105381%9 0.0968183 1.30 0.2536
Student usage[no] 0.39555689 (0.0968183 16.69 <.0001*

For log odds of no/yes
¥ Effect Likelihood Ratio Tests
Source Nparm DF L-R ChiSquare Prob>Chisq

Student usage 1 1 17.0193753 <,0001* y
R —————

The coefficient of interest is the effect of student usage on the no/yes log-odds for parental usage. The
test for the effect of student usage has chi-square test value of 17.02 with a small p-value which matches
the likelihood ratio test from the contingency table approach. Many packages use different codings for
categorical X variables (as seen in the section on multiple regression) so you need to check the computer
manual carefully to understand exactly what the coefficient measures.

However, the odds-ratio can be found from the red-triangle pop-down menu:
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B Maminal | nnictier Fit far F'.q

v Likelihood Ratio Tests
IJ Wald Tests

y Confidence Intervals
Range Odds Ratios

Unit Odds Ratios

Inverse Prediction

Save Probability Formula
ROC Curve

Lift Curve

Profiler

Script

Odds Ratio Odds Lower Odds Upper

2.20585189 1.5123456 3.23259738

and matches what was seen earlier.

Finally, the Analyze->Fit Model platform can be used with the Generalized Linear Model option:
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(©?2012 Carl James Schwarz

806 Fit Model

¥ [=] Model Specification

Select Columns Pick Role Variables

ik, Parental usage
il Student usage

ik Parental usage

4 Count

Weight

optional Numeric

Freq Count

Offset

optional Numeric

aptional
W optional

e |-

Construct Mode| Effects

Add Student usage

Cross

Nest

Macros ¥

Degree
Attributes [*]
Transform [*]

! No Intercept

il

This gives:

1645

Personality:] | Generalized Linear Model ¥
Distribution] ' Binomial v
Link Functign Logit v
d Overdispersion Tests and Intervals
€ Help B ] { Run Model )
(" Remove )

)
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enOe marijuana-short: Fit Model =)

R 7 B¢ LE P EENG R

Tools

¥ [=]Generalized Linear Model Fit

Freq: Count

Response: Parental usage
Modeling P(Parental usage=na)
Distribution: Binomial

Link: Logit

Observations (or Sum Wats) = 445
¥ Whole Model Test

Model -LogLikelihood ChiSquare DF Prob=Chisg

Difference B.50968767 17.0194 1 <.0001*

Full 299.238191

Reduced 307.747878

Goodness Of Fit Statistic ChiSquare DF Prob=Chisg

Pearson 445.0000 443 0.4643

Deviance 598.4764 443 <. 0001*

¥ Effect Tests

Source DF ChiSquare Prob=Chisqg

Student usage 1 17.0194 <, 0001*

¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob:=Chisq Lower CL Upper CL
Intercept 0.11054484 0.0968184 1.3056 0.2532 -0.079042 0.3007971
Student usage[no] 0.39556379 0.096E184 17.0194 <.0001* 0.2088309 {J.Sﬁﬁﬁfk

The test for a student effect has the same results as seen previously. But, ironically, gives no easy easy to
compute the odds ratio. It turns out that given the parameterization used by JMP, the log-odds ratio is twice
the coefficient of the student-usage, i.e. twice of -.3955. The odds-ratio would be found as the anti-log of
this value, i.e. €2X 73955 = 4522 and the confidence interval for the odds-ratio can be found by anti-logging
twice the confidence intervals for this coefficient, i.e. ranging from (e2* 5866 — 31 — 2x—2068 —
.66)E| These values are the inverse of the value seen earlier but this is an artefact of which category is

modelled. For example, the odds ratio of Parentsy s n(studenty ,s.n) = Parenion Y%Studemy )
. . vs.

Parentsy vs.n(studentn vs.y)

= Parentsy vs.y (studenty ,s.y)

22.6.3 Example: Effect of selenium on tadpoles deformities

The generalization of the above to more than two levels of the X variable is straight forward and parallels the
analysis of a single factor CRD ANOVA. Again, we will assume that the experimental design is a completely
randomized design or simple random sample.

Selenium (Se) is an essential element required for the health of humans, animals and plants, but be-

17 This simple relationship may not be true with other computer packages. YMMV.
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comes a toxicant at elevated concentrations. The most sensitive species to selenium toxicity are oviparous
(egg-laying) animals. Ecological impacts in aquatic systems are usually associated with teratogenic effects
(deformities) in early life stages of oviparous biota as a result of maternal sequestering of selenium in eggs.
In aquatic environments, inorganic selenium, found in water or in sediments is converted to organic selenium
at the base of the food chain (e.g., bacteria and algae) and then transferred through dietary pathways to other
aquatic organisms (invertebrates, fish). Selenium also tends to biomagnify up the food chain, meaning that
it accumulates to higher tissue concentrations among organisms higher in the food web.

Selenium often occurs naturally in ores and can leach from mine tailings. This leached selenium can
make its way to waterways and potentially contaminate organisms.

As a preliminary survey, samples of tadpoles were selected from a control site and three sites identified
as low, medium, and high concentrations of selenium based on hydrologic maps and expert opinion. These

tadpoles were examined, and the number that had deformities were counted.

Here is the raw data:

Site Tadpoles Deformed % deformed
Control 208 56 27%
low 687 243 35%
medium 832 329 40%
high 597 283 47%

The data are entered in JMP in the usual fashion:

'+ selenium-tadpoles

=]\ selenium | Total

-~ | Lewvel Tadpoles Status Count
1| low 687 | Deformed 243
2 [low 687 | Not Deformed 444
3 | high 597 | Deformed 283
4 | high 597 | Not Deformed 314
5 [ medium 832 | Deformed 329
6 | medium 832 | Not Deformed 503
7 | Control 208 | Deformed 56
8 | Control 208 | Not Deformed 152
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Notice that the status of the tadpoles as deformed or not deformed is entered along with the count of each
status.

As the selenium level has an ordering, it should be declared as an ordinal scale and the ordering of the
values for the selenium levels should be specified using the Column Information — Column Properties —
Value Ordering dialogue box

806 Selenium Level
_'Selenium Level' in Table 'selenium-tadpoles’ . (f 0K \J
Column Name [selenium Level L Lock (" Cancel )
Data Type Character ¥ [ Apply )
Modeling Type  nominal k P —
[ Help )
Initial Data Values | Missing/Empty ¥
Column Properties v
Value Ordering Value Ordering
optional item
g Specify data in the arder that you want them to appear in the
reports.
low
e medium
{ ) high [ Move Up )
ptional item
opHe ! [ Mowve Down )
| | Add
Wi

The hypothesis to be tested can be written in a number of equivalent ways:

: p(deformity) is the same for all levels of selenium.
: odds(deformity) is the same for all levels of selenium.
: log-odds(deformity) is the same for all levels of selenium.

: p(deformity) is independent of the level of seleniumﬂ

[ )
o K - & =

e H: odds(deformity) is independent of the level of selenium.

e H: log-odds(deformity) is independent of the level of selenium.

18The use of independent in the hypothesis is a bit old-fashioned and not the same as statistical independence.
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e H: p.(D) =pr(D) = pp(D) = pur (D) where pr, (D) is the probability of deformities at low doses,
etc.

There are again several ways in which this data can be analyzed.

Start with the Analyze->Fit Y-by-X platform:

806

Report: Fit ¥ by X - Contextual

A

ik
al

This will give a standard contingency table analysis (see chapter on chi-square tests).

Select Columns

Distribution of ¥ for each X. Modeling types determine analysis.
_Cas[ Selected Columns into Roles

ik Selenium Level
Al Total Tadpoles
il Status
Al Count

Contingency

M

Bivariate Oneway

¥, Response

il Status

optional

| X, Factor )

ik Selenium Level

optional

/| £

Logistic Contingency]

A ik afl

The mosaic plot:
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[ Weight ) optional Numeric
{ Freq |  Count
optional
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¥ Mosaic Plot
1.00-
0.757
Mot Deformed
(*]
=
= 0.507]
i "
0.257
Deformed
Q.00 T T T —
Control low medium high
Selenium Level

seems to show an increasing trend in deformities with increasing selenium levels. It is a pity that JMP
doesn’t display any measure of precision (such se bars or confidence intervals) on this plot.

The contingency table (with suitable percentages showﬂ

191 would display percentages to the nearest integer. Unfortunately, there doesn’t appear to be an easy way to control this in JMP.

1650 December 21, 2012
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¥ [~|Contingency Table
Status
Count |Deformed |Not Defor
Row % med
Control 56 152 208
26.92 73.08
?}j low 243 q.4 687
| 35.37 64.63
e medium 329 503 832
:E-‘ 39.54 00.46
Elhigh 283 314 597
A 47.40 52.60
911 1413 2324

also gives the same impression.

A formal test for equality of proportion of deformations across all levels of the factor gives the following
test statistics and p-values:

Test ChiSquare Prob>Chi5q
Likelinood Ratio 34,684 <. 0001*
Pearson 14,279 <, 0001*

There are two common test-statistics. The Pearson chi-square test-statistic which examines the difference
between observed and expected counts (see chapter on chi-square tests), and the likelihood-ratio test which
compares the model when the hypothesis is true vs. the model when the hypothesis is false. Both are asymp-
totically equivalent. There is strong evidence against the hypothesis of equal proportions of deformities.

Unfortunately, most contingency table analyses stop here. A naked p-value which indicates that there is
evidence of a difference but does not tell you where the differences might lie, is not very informative! In the
same way that ANOVA must be followed by a comparison of the mean among the treatment levels, this test
should be followed by a comparison of the proportion of deformities among the factor levels.

Logistic regression methods will enable us to estimate the relative odds of deformities among the various
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classes.

Start with the Analyze->Fit Model platform:

806 Fit Model
¥ [=]Model Specification
Select Columns ~ Pick Role Variables _ Personalit]: 'Nominal Logistic -
ol Selenium Level v i Status
4 Total Tadpoles optional e — —_—
il Status [ Help ) [ Run Model )
A Count

optional Numeric (W\]
I ( Freq ) Count I
[ By ) optional

Construct Model Eﬁ’ect_s

Add Selenium Level

|1 TS ]

[ Nest )

Degree
Attributes [*]
Transform [=]

! No Intercept

This gives the output:
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SO selenium-tadpoles: Fit Nominal Logistic =
¥ [~|Nominal Logistic Fit for Status
P Iteration History

Freq: Count

¥ Whole Model Test
Model -LogLikelihood DF Chisquare Prob=Chi5g
Difference 17.3422 3 34.08447 <.0001*
Full 1538.8844
Reduced 1556.2266
RSquare () 0.0111
Observations {(or Sum Wgts) 2324

Converged by Gradient
¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob=Chi5Sg
Intercept -0.9985285 0.1563205 40.80 <.0001*
Selenium Level[low-Caontrol] 0.39576536 0.1755094 5.08 0.0241*
Selenium Levellmedium-low] 0.1782307 0.1067477 2.79 0.0950
Selenium Levellhigh-medium] 0.32058633 0.1083784 B.75 0.0031*

For log odds of Deformed/Not Deformed
¥ Effect Likelihood Ratio Tests

Source Nparm DF L-R ChiSquare Prob>ChiSq
Selenium Level 3 3 14, 6844654 <.0001*

e
A —

First, the Effect Tests tests the hypothesis of equality of the proportion of defectives among the four levels
of selenium. The test-statistic and p-value match that seen earlier, so there is good evidence of a difference
among the deformity proportions among the various levels.

At this point in a ANOVA, a multiple comparison procedure (such a Tukey’s HSD) would be used to
examine which levels may have different means from the other levels. There is no simple equivalent for
logistic regression implemented in JMP@ It would be possible to use a simple Bonferonni correction if the
number of groups is small.

JMP provides some information on comparison among the levels. In the Parameter Estimates section,
it presents comparisons of the proportion of defectives among the successive levels of selenium@ The
estimated difference in the log-odds of deformed for the low vs. control group is .39 (se .18). The associated
p-value for no difference in the proportion of deformed is .02 which is less than the oz = .05 levels so there
is evidence of a difference in the proportion of deformed between these two levels.

By requesting the confidence interval and the odds-ratio these can be transformed to the odds-scale
(rather than the log-odds) scale.

20This is somewhat puzzling as the theory should be straight forward.
21 This is purely a function of the internal coding used by JMP. Other packages may use different coding. YMMV.
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¥ B Maminal | anictir Fit far St3

.+ Likelihood Ratio Tests
Wald Tests
v Confidence Intervals
v Range Odds Ratios
Unit Odds Ratios
Inverse Prediction
Save Probability Formula
ROC Curve
Lift Curve
1 Profiler 1
Script

¥ Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq Qdds Ratio  Lower 95% Upper 95% Odds Lower Odds Upper
Intercept -0.9985285 0.1563205 40.80 <.0001* . -1.3127906 -0.6987416 B .
Selenium Level[low-Control] 0.39576536 0.1755094 5.08 0.0241* 1.48552071 0.05674711 0.74578998 1.05838812 2.10810613
Selenium Level[medium-low] 0.1782307 0.1067477 2.79 0.0950 1.195101 -0.0309909 0.38745228 0.96948442 1.47322265
Selenium Level[high-medium] 0.32058633 0.1083784 8.75 0.0031* 1.37793545 0.10816866 0.533004 1.11423566 1.70404358

For log odds of Deformed/Not Deformed

Unfortunately, there is no simple mechanism to do a more general contrasts in this variant of the Analyze-
> Fit Model platform.

The Generalized Linear Model platform in the Analyze->Fit Model platform gives more options:
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806 Fit Model
¥ [~]Model Specification
Select Columns Pick Role Variables personali] Generalized Linear Model ¥
dil Selenium Level ¥ il Status Distributioh Rinomial v
Al Total Tadpoles 4> = S
ik Starus Link Functpn | Logit v
A Count —
C—Weight : optional Numerie — Owerdispersion Tests and Intervals
fooniarn | um
Freq | Count ( Help ) { Run Model )
( Offset ) optional Numeric [ Remove |
(f By \] optional

Construct Model Effects

Add Selenium Level

F 2
( Nest )

Macros ¥

Degree
Attributes [+]
Transform [=]

! No Intercept

The output you get is very similar to what was seen previously. Suppose that a comparison between the
proportions of deformities between the high and control levels of selenium are wanted.

Use the red-triangle pop-down menu to select the Contrast options:
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v M ranaralizad | inaar Mnardal

Q Custom Test... |

Covariance of Estimates
Correlation of Estimates
Profilers

« M O &

Diagnostic Plots
Save Columns
Script

ryYywvy

Then select the radio button for comparisons among selenium levels:

¥ Select Contrast Effect

@ Selenium Level

Click on the 4 and — to form the contrast. Here you are interested in LOpign — LOcontror Where the LO
are the log-odds for a deformity.
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I [+|Contrast
Contrast Specification

Selenium Level

Control

low
medium

high

Click on + or - to make contrast values.

_.-" "'H._ _.-" "'H._ _.-"
L MNew Column ) [ Done | |

"

S

Help :,'I

This gives:

» Test Detail

Level

Selenium Level|Control]

Selenium Level[low]

Selenium Level[medium]
eleniym Levellhiah

Chisguare
Prob=Chisq
-LoglLikelinood

|
[T I

0.8945826967
) b 5 L)
27.522915435
1.5524419e-7

1552.645849

-LoglLikelinood
DF

Chisguare
Prob>Chisqg

1552.645849
1
27.522915435
1.5524419e-7
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The estimated log-odds ratio is .89 (se .18). This implies that the odds-ratio of deformity is e-39 = 2.43,
i.e. the odds of deformity are 2.43 greater in the high selenium site than the control site. The p-value is well
below o = .05 so there is strong evidence that this effect is real. It is possible to compute the se of the odds-
ratio using the Delta method — pity that JMP doesn’t do this directly@ An approximate 95% confidence
interval for the log-odds ratio could be found using the usual rule of estimate + 2se. The 95% confidence
interval for the odd-ratio would be found by taking anti-logs of the end points.

This procedure could then be repeated for any contrast of interest.

22.7 Example: Pet fish survival as function of covariates - Multiple
categorical predictors

There is no conceptual problem in having multiple categorical X variables. Unlike the case of a single
categorical X variable, there is no simple contingency table approach. However, in more advanced classes,
you will learn about a technique called log-linear modeling that can often be used for these types of tables.

Again, before analyzing any dataset, ensure that you understand the experimental design. In these notes,
it is assumed that the design is completely randomized design or a simple random sample. If your design is
more complex, please seek suitable help.

A fish is a popular pet for young children — yet the survival rate of many of these fish is likely poor. What
factors seem to influence the survival probabilities of pet fish?

A large pet store conducted a customer follow-up survey of purchasers of pet fish. A number of customers
were called and asked about the hardness of the water used for the fish (soft, medium, or hard), where the
fish was kept which was then classified into cool or hot locations within the living dwelling, if they had
previous experience with pet fish (yes or no), and if the pet fish was alive six months after purchase (yes or
no).

Here is the raw data™}

22 For those so inclined, if 8 is the estimator with associated se, then the se of ¢? is found as se(eg) = se(@) x €. In this case, the
se of the odd-ratio would be .18 x €89 = .44.
23Taken from Cox and Snell, Analysis of Binary Data
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Softness Temp PrevPet N Alive

h c n 89 37
h h n 67 24
m c n 102 47
m h n 70 23

c n 106 57
s h n 48 19
h c y 110 68
h h y 72 42
m c y 116 66
m h y 56 33
] c y 116 63
s h y 56 29

There are three factors in this study:

e Softness with three levels (h, m or s);
o Temperature with two levels (c or h);

e Previous ownership with two levels (y or n).

This a factorial experiment because all 12 treatment combinations appear in the experiment.

The experimental unit is the household. The observational unit is also the household. There is no
pseudo-replication.

The randomization structure is likely complete. It seems unlikely that people would pick particular
individual fish depending on their water hardness, temperature, or previous history of pet ownership.

The response variable is the Alive/Dead status at the end of six months. This is a discrete binary outcome.
For example, in the first row of the data table, there were 37 households where the fish was still alive after 6
months and therefore 89 — 37 = 52 households where the fish had died somewhere in the 6 month interval.

One way to analyze this data would be to compute the proportion of households that had fish alive after
six months, and then use a three-factor CRD ANOVA on the estimated proportions. Because each treatment
combination is based on a different number of trial (ranging from 48 to 116) which implies that the variance
of the estimated proportion is not constant. This violates (but not likely too badly) one of the assumptions
of ANOVA - that of constant variance in each treatment combination. Also, this seems to throw away data,
as these 1000 observations are basically collapsed into 12 cells.

Because the outcome is a discrete binary response and each trial within each treatment is independent, a
logistic regression (or generalized linear model) approach can be used.
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The data is available in the JMP data file fishsurvive.jmp available in the Sample Program Library
at http://www.stat.sfu.ca/~cschwarz/Stat—-650/Notes/MyPrograms. Here is the data
file:

f

[

G0 |~ |h |u | B W |k

h
h
m
m
5
5
h
h
m
m
5
5

s T e 2 O el T e T e i O e
L M M B D D (3D (S 3 33

To begin with, construct some profile plots to get a feel for what is happening. Create new variables
corresponding to the proportion of fish alive and its logiﬂ These are created using the formula editor of
JMP in the usual fashion. Also, for reasons which will become apparent in a few minutes, create a variable
which is the concatenation of the Temperature and Previous Ownership factor levels. This gives:

24 Recall that logit(p) = log (ﬁ)

(©?2012 Carl James Schwarz 1 660 December 21, 2012


http://www.stat.sfu.ca/~cschwarz/Stat-650/Notes/MyPrograms

CHAPTER 22.

LOGISTIC REGRESSION

plalive)

logit
{alive)

=

0.42

-0.34

0.36

-0.58

0.46

-0.16

0.33

-0.71

0.54

0.15

0.40

-0.42

0.62
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0.34
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0.54

0.17

[
Frd

0.52

0.07

Now use the Analyze->Fit Y-by-X platform and specify that the p(alive) or logit(alive) is the response
variable, with the WaterSoftness as the factor.

eoe6

Report: Fit ¥ by X - Contextual

Distribution of ¥ for each X. Modeling types determine analysis.
Select Columns

Cast Selected Columns into Roles

Action

Oneway
d |

e

ik, Softness

ik Temperature
ik PrevFish

Al Trials

Al Alive

A plalive)

Al logit{alive)
ik TempPrev

i

a L

A
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A pralive)
Al logitialive)
optional

ik Softness
optional

optional
optional Numeric

optional Numeric

optional

OK

Cancel

Remove
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Then specify a matching column for the plot (do this on both plots) using the concatenated variable defined
above.

SHSNG) fishalive: F

¥ B Nnawav Analueie nf nfalival g
~  Quantiles '
Means/Anova

Means and 5td Dev
Compare Means >
Nonparametric
UnEqual Variances
Equivalence Test
Power...

S5et of Level >
Normal Quantile Plot >
CDF Plot

Matching Column...

v

Matches up data using another column's
values to connect data across groups in the
graph, and provides a matched pairs test.
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Select a Matching Column

Softness
Temperature
PrevFish
Trials

Alive

plalive)

. ' Y

TemoPrev 1

( Cancel :) G—ﬂi—;

This creates the two profile plotﬂ

0.65 0.50 ™y
Fe-y -
4 — wh— -
0.50 shey B 0.25- Y —

2)
(=] =
v w
= L
1 |
II
i
1
|
|
|
\.;'
ici}
e
[
(=]
|
Xm

L0.a5- _— :

I
ogit(alive)

-
o -0.25 T

®c=h = ®Br-n

040
-0.50

0.35]
0.30 T T =0.75% T T

h m 5 h m 5

Softness Softness

The profile plots seem to indicate that the p(alive) tends to increase with water softness if this is a first time
pet owner, and (ironically) tends to decrease if a previous pet owner. Of course without standard error bars,
it is difficult to tell if these trends are real or not. The sample sizes in each group are around 100 households.

If p(alive) = .5, then the approximate size of a standard error is se = 4/ 'Ei(o'g) = .05 or the approximate

95% confidence intervals are +.1. It looks as if any trends will be hard to detect with the sample sizes used
in this experiment.

25 To get the labels on the graph, set the concatenated variable to be a label variable and the rows corresponding to the 4 softness
level to be labeled rows.
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In order to fit a logistic-regression model, you must first create new variable representing the number
Dead in each triaﬂ and then stackEl the Alive and Dead variables, label the columns as Status and the
Count of each Status to give the final table:

q

Soft | Temp | Pre p logit Cou
| nes | eratu | vFi | Trials | (alive) | (alive) | TempPrev | Status | nt

l|h C n B9 0.42 -0.34 |[c-n Alive iv
2lh C n B9 0.42 -0.34 |c-n Dead 52
3lh h n a7 0.3 -0.58 | h-n Alive 24
4h h n a7 0.36 -0.58 | h-n Dead 43
5| m C n 102 0.46 -0.16 [c-n Alive 47
6 (m C n 102 0.46 -0.16 |c-n Dead 55
7|m h n 70 0.33 -0.71 | h-n Alive 23
Elm h n 70 0.33 -0.71 | h-n Dead 47
9(s C n 106 0.54 0.15 [c-n Alive 57
10|s C n 106 0.54 0.15 [c-n Dead 49
11(s h n 48 0.40 -0.42 | h-n Alive 19
12 s h n 48 0.40 -0.42 | h-n Dead 29
13 |h C W 110 0.62 0.48 | c-vy Alive ]
14| h C v 110 0.62 0.48 | c-vy Dead 42
15|h h W Ly 0.58 0.34 | h-y Alive 42
16 |h h W 72 0.58 0.34 | h-y Dead 30
17|m C Y 116 0.57 0.28 | c-y Alive [i]4]
18 m C v 116 0.57 0.28 | c-y Dead 50
19|m h W 56 0.59 0.36 | h-y Alive i3
20| m h W 56 0.59 0.36 | h-y Dead 23
21|58 C v 116 0.54 0.17 | c-y Alive 03
22158 C W 116 0.54 0.17 | c-v Dead 53
23 (s h W 56 0.52 0.07 | h-y Alive 29
24 |5 h W i14] 0.52 0.07 | h-y Dead 27

Whew! Now we can finally fit a model to the data and test for various effects. In JMP 6.0 and later,
there are two ways to proceed (both give the same answers, but the generalized linear model platform gives
a richer set of outputs). Use the Analyze->Fit Model platform:

26Use a formula to subtract the number alive from the number of trials.
27Use the Tables->Stack command.
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| Cross
£ N
I Nest

Macros ¥

PrevFish
Softness*PrevFish
Temperature*PrevFish
Softness*Temperature*PrevFish

eoe Fit Model
¥ [=]Model Specification
Select Columns Pick Role Variables Personality: (Generalized Linear Model ¥
il Softness ¥ il Status Distribution | ginomial L4
ik Temperature (—) ) i -
dL PrevFish Link Function | ggit v
: ;Eﬁil:e} W optional Numeric ™ Overdispersion Tests and Intervals
( ) optional Num — —
Al logit(alive) J— -
ik TempPrev Freq I Count I { Help ) [ Run Model )
il Status (—>
.
4l Count ( Offset ) optional Numeric Remove
£ By Y  optional
Construct Mode| Effects
Add Softness
Temperature
Softness*Temperature

Degree
Attributes [=]
Transform [*]

! No Intercept

Notice that the response variable is Status and that the frequency variable is the Count of the number of
times each status occurs. The model effects box is filled with each factors effect, and the second and third

order interactions.

This gives the following output:
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¥ [~/ Generalized Linear Model Fit

Overdispersion parameter estimated by Pearson Chisg/DF

Freq: Count

Modeling P{Status=Alive)

Distribution: Binomia

Link: Logit

Observations (or Sum Wagts) = 1008

¥ Whole Model Test
Maodel =LoglLikelihood Chisquare DF Prob=>=Chisq
Difference 16.4128113 32.8256 11 0.0006*
Full 082.2478
Reduced 698.660612
Coodness Of Fit Statistic ChiSquare DF Prob=Chisq Owerdispersion
Pearson 1008.000 996 0.3887 1.0000
Deviance ;354.495 Q96 < 0001

¥ Effect Tests
Source DF ChiSquare Prob>Chisqg
Softness P 0.0980 0.9522
Temperatura 1 1.6391 0.0564
Softness*Temperature 2 0.1962 0.9066
PrevFish 1 22.1317 <.0001*
Softness*PrevFish 2 31.7861 0.1506
Temperature*PrevFish 1 2.2609 0.1327
Softness*Temﬁerature’PrevFish 2 0.7373 0.6917

Check to see exactly what is being modeled. In this case, it is the probability of the first level of the
responses, logit(alive).

Then examine the effect tests. Just as in ordinary ANOVA modeling, start with the most complex term,
and work backwards successively eliminating terms until nothing more can be eliminated. The third-order
interaction is not statistically significant. Eliminate this term from the Analyze->Fit Model dialog box, and
refit using only main effects and two factor interactions@

Successive terms were dropped to give the final model:

28 Just like regular ANOVA, you can’t examine the p-values of lower order interaction terms if a higher order interaction is present.
In this case, you can’t look at the p-values for the second order interaction when the third order interaction is present in the model. You
must first refit the model after the third order interaction is dropped.
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¥ [~/ Generalized Linear Model Fit

Overdispersion parameter estimated by Pearson Chisqg/DF
Freq: Count

Response: Status

Modeling P(5tatus=Alive)

Distribution: Binomial

Link: Logit

Observations (or Sum Wqts) = 1008

» Whole Model Test

¥ Effect Tests

Source DF ChiSquare Prob>Chisg
Softness 2 0.2705 0.8735
Temperature 1 1.5139 0.0609
PrevFish 1 19.6267 <, 0001*
Softness*PrevFish 2 5.1132 0.0776

It appears that there is good evidence of Previous Ownership, marginal evidence of an effect of Temperature
and an interaction between water softness and previous ownership. [Because the two factor interaction was
retained, the main effects of softness and previous ownership must be retained in the model even though it
looks as if there is no main effect of softness. Refer to the previous notes on two-factor ANOVA for details.]

Save the predicted p(alive) to the data tablﬂ

2CAUTION: the predicted p(alive) is saved to the data line even if the actual status is dead.
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806 untitled 5: Fit Model — © command.

=, laobel the col

H ranaralizad | inaar Madal Fit to give the fi

Custom Test...
Contrast
Covariance of Estimates
Correlation of Estimates
Profilers
Diagnostic Plots
Save Columns

Softness 2
Temperature 1
PrevFish 1
Softness*PrevFish 2

> Parameter Estimates
¥ Studentized Deviance Res

by Pearson Chisg/DF
=izhdlivesf ishal

Lhe dato and teg
to proceed {bot
rear model platf
1% platform:

Prediction Formula

Predicted Values

Mean Confidence Interval

Save Indiv Confid Limits
Deviance Residuals

Pearson Residuals

Studentized Deviance Residuals
Studentized Pearson Residuals

and plot the observed proportions against the predicted values as seen in regression examples earlierm

30Use the Analyze->Fit Y-by-X platform, and then the Fit Special option to draw a line with slope=1 on the plot.
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& O © untitled 5: Fit Y by X of p(alive) by Pr... &

¥ [=|Bivariate Fit of p(alive) By Pred 5Status
0.65

0.60

A5 .5 .
Pred Status

The plot isn’t bad and seems to have captured most of what is happening. Use the Analyze->Fit Y-by-X
platform, with the Matching Column as before to create the profile plot of the predicted values:
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0.65
Be=y_ Final Model predicted
0.6 Tm | values
wh=y T
0.557 . "

Pred Status
=
= =
v 9

=
is
I

0.35

It is a pity that JMP gives you no easy way to annotate the standard error or confidence intervals for the

Softness

predicted mean p(alive), but the confidence bounds can be saved to the data table.

Unlike regular regression, it makes no sense to make predictions for individual fish.

By using the Contrast pop-down menu, you can estimate the difference in survival rates (but, unfortu-
nately, on the logit scale) as needed. For example, suppose that you wished to estimate the difference in
survival rates between fish raised in hard water and no previous experience and hard water with previous
experience. Use the Contrast pop-down menu:
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v Ml hanaralizad | inaar Madal
- Custom Test... '

Covariance of Estimates
Correlation of Estimates
Profilers

Diagnostic Plots
Save Columns
Script

¥ Select Contrast Effect

o
o
o
L
o
e

The contrast is specified by pressing the - and + boxes as needed:

(©?2012 Carl James Schwarz
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Contrast Specification

Softness*PrevFish

h,n 1| 4] -
h,y =1 +]-
m,n 0l +| =
m,Y 0l +1 -
5,0 0l +|] =
5.Y 0l +] -

Click on + or - to make contrast values.
O ——————————

This gives:

> Test Detail
Level

softness*PrevFish[h,n) 1
Softness*PrevFish[h,y] -1
softness*PrevFish[m,n] 0
Softness*PrevFish[m,y] 0
softness*PrevFish(s,n) 0
Softness*PrevFish(s,y] 0
Value -0.861562398
5td Error 0.223787567
ChiSguare 15. 168297884
Prob>Chisg 0.0000983407
-LogLikelinood 691.38936833
-LoglLikelinood 691.38936833

DF 1

ChiSguare 15.168297884

Prob>Chisq 0.0000983407
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Again this is on the logit scale and implies that the logit(p(alive))n , — logit(p(alive))s , = —.86 (se .22).
This is highly statistically significant. But, what does this mean? Working backwards, we get:

logit (p (alive),,,) — logit (p (alive)hy) = —.86
log [ p(alive), ] _ log[ p(alive),, ] — _ 86

1—-p(alive), . 1—p(alive),,
].Og |:odds(alive);m:| — _ %6

odds(alive)p,
odds(alive)n _ ,—86 — 493

odds(alive)py
Or, the odds of a fish being alive from a non-owner in hard water are about 1/2 of the odds of a fish being
alive from a previous owner in hard water. If you look at the previous graphs, this indeed does match. It is
possible to compute a se for this odds ratio, but is beyond the scope of this course.

22.8 Example: Horseshoe crabs - Continuous and categorical predic-
tors.

As to be expected, combinations of continuous and categorical X variables can also be fit using similar
reasoning as ANCOVA models discussed in the chapter on multiple regression.

If the categorical X variable has k categories, k — 1 indicator variables will be created using an appropri-
ate coding. Different computer packages use different codings, so you must read the package documentation
carefully in order to interpret the estimated coefficients. However, the different codings, must, in the end,
arrive at the same final estimates of effects.

Unlike the ANCOVA model with continuous responses, there are no simple plots in logistic regression
to examine visually the parallelism of the response or the equality of interceptsEr] Preliminary plots where
data are pooled into various classes so that empirical logistic plots can be made seem to be the best that can
be done.

As in the ANCOVA model, there are three models that are usually fit. Let X represent the continuous
predictor, let C'at represent the categorical predictor, and p the probability of success. The three models are:

e logit(p) = X Cat X x Cat - different intercepts and slopes for each group;
e logit(p) = X Cat - different intercepts but common slope (on the logit scale);

e Jogit(p) = X - same slope and intercept for all groups - coincident lines.

The choice among these models is made by examining the Effect Tests for the various terms. For example,
to select between the first and second model, look at the p-value of the X * C'at term; to select between the
second and third model, examine the p-value for the C'at term.

31This is a general problem in logistic regression because the responses are one of two discrete categories.
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These concepts will be illustrated using a dataset on nesting horseshoe crabﬂ that is analyzed in

Agresti’s booklﬂ

The design of the study is given in Brockmann H.J. (1996). Satellite male groups in horseshoe crabs,
Limulus polyphemus. Ethology, 102, 1-21. Again it is important to check that the design is a completely
randomized design or a simple random sampling. As in regression models, you do have some flexibility in
the choice of the X settings, but for a particular weight and color, the data must be selected at random from

that relevant population.

Each female horseshoe crab had a male resident in her nest. The study investigated other factors affecting
whether the female had any other males, called satellites residing nearby. These other factors includes:

e crab color where 2=light medium, 3=medium, 4=dark medium, 5=dark.

e spine condition where 1=both good, 2=one worn or broken, or 3=both worn or broken.

e weight

e carapace width

The number of satellites was measured; for this example we will convert the number of satellite males into
a presence (number at least 1) or absence (no satellites).

A JMP dataset crabsatellites.jmp is available from the Sample Program Library at http://www.
stat.sfu.ca/~cschwarz/Stat-650/Notes/MyPrograms. A portion of the datafile is shown

below:
crabsatellites.jmp
[=] Carapace | Satellite |Weight | Satellite Males
~__ | Color | Spine | Width males (q) Present
1 3 3 28.3 8 3050 | yes
2 4 3 22.5 0 1550 | no
3 2 1 26.0 9 2300 [ves
4 4 3 24.8 0 2100 | no
5 4 3 26.0 4 2600 [ves
3] i i 23.8 0 2100 | no

32 Seehttp://en.wikipedia.org/wiki/Horseshoe_crab,
33These are available from Agresti’s web site at http: //www.stat.ufl.edu/~aa/cda/sas/sas.html.
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Note that the color and spine condition variables should be declared with an ordinal scale despite having
numerical codes. The number of satellite males was converted to a presence/absence value using the JMP
formula editor.

A preliminary scatter plot of the variables shows some interesting features.

¥ [=|Scatterplot Matrix
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2.57] _
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5500 - . :
4500
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2500 ! H N -
e l - I- . .I !.I
1500 L - oy
LA R L L A LAl L O O O O B
20 3.040 50 1152253 21242730330 10 1500 3500 5500

There is a very high positive relationship between carapace width and weight, but there are few anomalous
crabs that should be investigated further as shown in this magnified plot:
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5500
50007
45007
E#DDD— .
= 3500 -
80004 coain
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2500 PR L
. .|_-,.-l- H
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1500 'e )
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Carapace Width {cm)

There are three points with weights in the 1200-1300 g range whose carapace widths suggest that the weights
should be in the 2200-2300 g range, i.e. a typographical error in the first digit. There is a single crab whose
weight suggests a width of 24 cm rather than 21 cm — perhaps a typo in the last digit. Finally, there is one
crab which is extremely large compared to the rest of the group. In the analysis that follows, I've excluded
these five crabs.

The final point also appears to have an unusual number of satellite males compared to the other crabs in
the dataset.

The Analyze->Fit Y-by-X platform was then used to examine the differences in mean or proportions in
the other variables when grouped by the presence/absence score. These are not shown in these notes, but
generally demonstrate some separation in the means or proportions between the two groups, but there is
considerable overlap in the individual values between the two groups. The group with no satellite males
tends to have darker colors than the presence group; while the distinction between the spine condition is not
clear cut.

Because of the high correlation between carapace size and weight, the weight variable was used as the
continuous covariate and the color variable was used as the discrete covariate.

A preliminary analysis divided weight into four classes (up to 2000g; 2000-2500 g; 2500-3000 g; and
over 3000 g)@ Similarly, a new variable (PA) was created to be 0 (for absence) or 1 (for presence) for the
presence/absence of satellite males. The Tables->Summary was used to compute the mean PA (which then

34The formula commands of JMP were used.
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corresponds to the estimated probability of presence) for each combination of weight class and color:

806

Summary

Select Columns

il Color

il Spine

4l Carapace Width (c
Al satellite males

A Weight (g}

ik, Satellite Males Pre
il WeightClass

A PA

[ Include marginal statistics

For guantile statistics, enter value (%)
—

statistics column name format
stat(column) ¥

EF Reqguest Summary Statistics by Grouping Columns.

Action

Output table name|

(©?2012 Carl James Schwarz

1677

Statistics ¥

Mean(PA)
optional

= WeightClass
£ Color
optional

[s] [5]

optional

December 21, 2012

0K

Cancel

Remove




CHAPTER 22. LOGISTIC REGRESSION

WeightClass Mean(PA)

Q000-2000 1.00
Q000-2000 0.57
Q000-2000 0.31
Q000-2000 0.29
2000-2500 0.75
2000-2500 0.65
2000-2500 0.53
2000-2500 0.50
2500-3000 0.60
2500-3000 0.84
2500-3000 0.90
2500-3000 0.00
3000+ 1.00
1000+ 0.86
1000+ 1.00
1000+ 1.00

WD |00 (=~ |Ch W (s (L | B[

2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5

Finally, the Analyze->Fit Y-by-X platform was used to plot the probability of presence by weight class, using
the Matching Column to joint lines of the same color:
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eoe

Report: Fit ¥ by X - Contextual

Distribution of ¥ for each X. Modeling types determine analysis.

Select Columns Cast Selected Columns into Roles

Action

ik Color

Oneway
A |5

4]

il WeightClass

A N Rows
Al Mean(PA)

gl

¢ kg

A
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Al MeaniPA)
optional

il WeightClass
optional

optional
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& ) ) crabsatellites By (WeightClas

¥ B Nnawav Analucic af Maan/DPA
~ Quantiles '

Means /Anova

Means and Std Dev
Compare Means ;>
Nonparametric >

UnEqual Variances
Equivalence Test

Power...

Set o Level >
Normal Quantile Plot >
CDF Plot 1

Matching Column...
Save

Display Options
Script
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Select a Matching Column

WeightClass
Color

N Rows
Mean(PA)

li Cancel ) M

Mean(PA)

|
0000-2000 2000-2500 2500-3000 3000+

WeightClass

Note despite the appearance of non-parallelism for the bottom line, the point in the 2500-3000 gram category
is only based on 4 crabs and so has very poor precision. Similarly, the point near 100% in the 0000-2000 g
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category is based on 1 data point! The parallelism hypothesis may be appropriate.

A generalized linear model using the Analyze->Fit Y-by-X platform was used to fit the most general
model using the raw data:

e0Oe Fit Model

¥ [*]Model Specification
Select Columns ~ Pick Role Variables Personality

Generalized Linear Model ¥

ik Color ik Satellite Males Pre Distributiod | Binomial v
il Spine - -

A Carapace Width (¢ Link Functipn’ Logit v
Al Satellite males M . ’

“d Weight (g) Weight optional Numeric __ Overdispersion Tests and Intervals

ik Satellite Males Pre P P

ik, WeightClass Freq optional Numeric [ Help ) ([ Run Model )

A PA

F E——
Offset optional Numeric [ Remove )

optional

fUlil3

Construct Model Effects

Ad Color
Weight (g)

Color*weight (g)

Degree
Attributes [+]
Transform [=]

! No Intercept

This gives the results:
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¥ [~|Generalized Linear Model Fit

Response: 5atellite Males Present

Maodeling P(5atellite Males Present=no)

Distribution: Binomial

Link: Logit

Observations (or Sum Wats) = 168

¥ Whole Model Test
Model -LogLikelihood ChiSquare DF Prob>Chisg
Difference 18.76488959 37.5298 7 <. 0001*
Full 89.5025237
Reduced 108.267414
Coodness Of Fit Statistic ChiSquare DF Prob>Chisg
Pearson 157.8509 160 0.5332
Deviance 179.0050 160 0.1446

¥ Effect Tests
Source DF ChiSguare Prob>Chisqg
Colar 3 9.8995 0.0194*
Weight (g) 1 5.2817 0.0216*
Color*Weight (g) 3 7.6843 0.0530

The p-value for non-parallelism (refer to the line corresponding to the Color*Weight term) is just over
a = .05 so there is some evidence that perhaps the lines are not parallel. The parameter estimates are not
interpretable without understanding the coding scheme used for the indicator variables. The goodness-of-fit
test does not indicate any problems.

Let us continue with a the parallel slopes model by dropping the interaction term. This gives the follow-
ing results:
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¥ [~/ Generalized Linear Model Fit

Response: 5atellite Males Present
Modeling P{Satellite Males Present=no}
Distribution: Binomial

Link: Logit

Observations (or Sum Wats) = 168

¥ Whole Model Test

Model -LogLikelihood ChiSquare DF Prob=>Chisqg
Difference 149227318 29.8455 4 <., 0001*
Full 93.3446819

Reduced 108.267414

Coodness Of Fit Statistic ChiSquare DF Prob=>Chisqg
Pearson 166.3963 163 0.4115

Deviance 186.6894 163 0.0985

¥ Effect Tests

Source DF ChisSquare Prob=>Chisqg

Color i 0.4982 0.0897

Weight (g) 1 18.6841 <., 0001*

There is good evidence that the log-odds of NO males present decrease as weight increases (i.e. the log-odds
of a male being present increases as weight increases), with an estimated increase of .0016 in the log-odds
per gram increase in weight. There is very weak evidence that the intercepts are different as the p-value is
just under 10%.

The goodness-of-fit test seems to indicate no problem. The residual plot must be interpreted carefully,
but its appearance was explained in a previous section.

The different intercepts will be retained to illustrate how to graph the final model. Use the red-triangle

to save the predicted probabilities to the data table. Note that you may wish to rename the predicted column
to remind yourself that the probability of NO male is being predicted.
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¥ M Conaralizad 1 inaar Madal Fjt
» Custom Test... '
Contrast D)
Covariance of Estimates
Correlation of Estimates

Profilers >

Diagnostic Plots |3 " P

Save Columns > Prediction Formula
Predicted Values

Mean Confidence Interval
Goodness Of Fit Statistic 1 Save Indiv Confid Limits

Pearson . )
Deviance Deviance Residuals

¥ Effect Tests Pearson Residuals
Source DF ChiSquare Studentized Deviance Residuals
Color 3 6.4982 Studentized Pearson Residuals

Use the Analyze->Fit Y-by-X platform to plot the predicted probability of absence against weight, use the
group by option to separate by color, and then fit a spline (a smooth flexible curve) to draw the four curves:

(©?2012 Carl James Schwarz 1 685 December 21, 2012



CHAPTER 22. LOGISTIC REGRESSION

eoe

Report: Fit ¥ by X - Contextual

Select Columns

Distribution of ¥ for each X. Modeling types determine analysis.

Cast Selected Columns into Roles

Action

ik Color

ik Spine

Al Carapace Width {cm)
Al Satellite males

A Weight (g)

il Satellite Males Present
ik WeightClass

Al PA
Al Pred Satellite Males Pre

JBivariate

4 1.7 |
Bivariate Oneway

ik

dil _/l/_ il
Logistic Contingency

| ik afl

Al Pred Satellite Male

optional

X, Factor A Weight (g)
optional
Block optional

Weight optional Numeric

optional Numeric

" optional

~ + Show Points
Fit Mean

Fit Line

Fit Polynomial
Fit Special...

G

C

S

C

% | FitSpline

j Fit Each Value

Fit Orthogonal
Density Ellipse
Nonpar Density

¥ B Rivariata Fit nf Prad Satellit

Histogram Borders

| Grouphy.. 8

L
{I

Select a grouping column so that further fits

will be done on each group.
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7 + Show Points
Fit Mean

Fit Line

Fit Polynomial
Fit Special...
Fit Spline
Fit Each Value

Fit Orthogonal
Density Ellipse
Nonpar Density
Histogram Borders

Group By...
Script

to give the final plot:
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| | ' |
1500 2000 2500 3000 3500 4000
Weight (g)

Notice that while the models are linear on the log-odds scale, they plots will show a non-linear shape on the
regular scale.

It appears that the color=5 group appears to be different from the rest. If you do a contrast among the
intercepts (not really a good idea as this could be considered data dredging), you indeed find evidence that
the intercept (on the log-odds scale) for color 5 may be different than the average of the intercepts for the
other three colors:
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¥ Select Contrast Effect
® Color

€ Go 3
e

¥ [=|Contrast
» Test Detail

Level

Colar([2] -0.333333333
Color[3] -0.333333333
Color[4] -0.333333333
Color[5] 1
Value 1.2059379592
5td Error 0.5603517838
ChiSguare 4.8680002736
Prob=Chisq 0.0273591867

-Loglikelinood  95.778682068
-LoglLikelinood  95.778682068

DF 1
Chisguare 4.8680002736
Prob>Chisqg 0.0273591867

22.9 Assessing goodness of fit

As is the case in all model fitting in Statistics, it is important that the model provides an adequate fit to the
data at hand. Without such an analysis, the inferences drawn from the model may be misleading or even
totally wrong!

One of the “flaws” of many published papers is a lack to detail on how the fit of the model to the data
was assessed. The logistic regression model is a powerful statistical tool, but it must be used with caution.

Goodness-of-fit for logistic regression models are more difficult than similar methods for multiple re-
gression because of the binary (success/failure) nature of the response variable. Nevertheless, many of the
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methods used in multiple regression have been extended to the logistic regression case.

A nice review paper of the methods of assessing fit is given by

Hosmer, D. W., Tabler, S., and Lameshow, S. (1991).

The importance of assessing the fit of logistic regression models: a case study.
American Journal of Public Health, 81, 1630§A§1635.
http://dx.doi.org/10.2105/AJPH.81.12.1630

In any statistical model, there are two components — the structural portion (e.g. the fitted curve) and the
residual (or noise) (e.g. the deviation of the actual values from the fitted curve). The process of building a
model focuses on the structural portion. Which variables are important in predicting value? Is the correct
scale (e.g. should x or 22 be used?) After the structural model is fit, the analyst should assess the degree fit.

Assessing goodness-of-fit (GOF) usually entails two stages. First, computing a statistic that summarizes
the general fit of the model to the data. Second, computing statistics for individual observations that assess
the (lack of) fit of the model to individual observations and their leverage in the fit. This may indentify
particular observations that are outliers or have undue influence or leverage on the fit. These points need to
be inspected carefully, but it is important to remember that data should not be arbitrarily deleted based solely
on a statistical measure.

Let 7; represent the predicted probability for case ¢ whose response is either O (for failure) or 1 (for
success). The deviance of a point is defined as

4 = 270 (1~ 7))
and is basically a function of the log-likelihood for that observation.

The total deviance is defined as:

D=Y d;

Another statistics, the Pearson residual, is defined as:

Yi — T
mi(1—7;)

fi=

and the Pearson chi-square statistic is defined as
2 2
X = E T

The summary statistics D and x? each have degrees of freedom approximately equal to n — (p + 1)
where p is the number of predictor variables, but don’t have any nice distributional forms (i.e. you can’t
assume that they follow a chi-square distribution). This is because the individual components are essentially
fromed from n X 2 contingency table with all counts 1 or 0 so the problem of small expected counts found in
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chi-square tests is quite serious. So any p-value reported for these overall goodness-of-fit measures are not
very reliable, and about the only thing that is useful is to compare these statistics to their degrees of freedom
to compute an approximate variance inflation factor as seen earlier in the Fitness example.

One strategy for sparse tables is to pool. The Lemeshow test divides the data into 10 groups of equal
sizes based on the deciles of the fitted values. The observed and expected counts are computed by summing
the estimated probabilities and the observed values in the usual fashion, and then computing a standard
chi-square goodness-of-fit statistic. It is compared to a chi-square distribution with 8 df.

Any assessment of goodness of fit should then start with the examination of the D, x? and Lemeshow
statistics. Then do a careful evauation of the individual terms d; and r;.

To start with, examine the residual plots. Suppose we wish to predict membership in a category as a
function of a continuous covariate. For example, can we predict the sex of an individual based on their
weight? This is known as logistic regression and is discussed in another chapter in this series of notes.

Again refer to the Fitness dataset. The (Generalized Linear) model is:

Y; distributed as Binomial(p;)
¢; = logit(p;)
o; = Weight

The residual plot is produced automatically from the Generalized Linear Model option of the Analyze-> Fit
Model platform and looks likﬂ

35 T added reference lines at zero, 2, and —2 by clicking on the Y axis of the plot
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¥ Studentized Deviance Residual by Predicted
2.
l' E ]
L ]
= l.0Area of concern " -
- 8 Y .
@ 0.5 . .
S 0.0
= !
]
g 'E"—D.E_ Et
= " e
@S -1.0- .
w . i 1
0.1.54 .
-2.0
-2.5 T | T | | | |
o 1 2 3 4 5 & 7 & 9 10
Sex Predicted

This plot looks a bit strange!

Along the bottom of the plot, is the predicted probability of being femalﬂ This is found by substituting
in the weight of each person into the estimated linear part, and then back-transforming from the logit scale
to the ordinary probability scale. The first point on the plot, identified by a square box, is from a male who
weighs over 90 kg. The predicted probability of being female is very small, about 5%.

The first question is exactly how is a residual defined when the Y variable is a category? For example,
how would the residual for this point be computed - it makes no sense to simply take the observed (male)
minus the predicted probability (.05)?

Many computer packages redefine the categories using 0 and 1 labels. Because JMP was modeling the
probability of being female, all males are assigned the value of 0, and all females assigned the value of 1.
Hence the residual for this point is 0-.05-0.05 which after studentization, is plots as shown.

The bottom line in the residual plot corresponds to the male subjects, The top line corresponds to the
female subjects. Where are areas of concern? You would be concerned about females who have a very small
probability of prediction for being female, and males who have a large probability of prediction of being

36 The first part of the output from the platform states that the probability of being female is being modeled.
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female. These are located in the plot in the circled areas.
The residual plot’s strange appearance is an artifact of the modeling process.

What happens if the predictors in a logistic regression are also categorical. Based on what what seen for
the ordinary regression case, you can expect to see a set of vertical lines. But, there are only two possible
responses, so the plot reduces to a (non-informative) set of lattice points.

For example, consider predicting survival rates of Titanic passengers as a function of their sex. This
model is:

Y; distributed as Binomial(p;)
¢; = logit(p;)
¢; = Sex

The residual plot is produced automatically from the Generalized Linear Model option of the Analyze-> Fit
Model platform and looks like’}

 Studentized Deviance Residual by Predicted
3.0
2.5-
2.0
= —
23 1o- .
[ '; =
= @ (.57
E' =
o U 0.0
E €-0.57m
@5 -1.07
5 -1.5- x
-2.0
-2.5-
-3.0 T - T v T : | : | '
2 3 4 5 6 7
Survived Predicted

371 added reference lines at zero, 2, and —2 by clicking on the Y axis of the plot
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The same logic applies as in the previous sections. Because Sex is a discrete predictor with two possible
values, there are only two possible predicted probability of survival corresponding to the two vertical lines
in the plot. Because the response variable is categorical, it is converted to a O or 1 values, and the residuals
computed which then correspond to the two dots in each vertical line. Note that each dot represents several
hundred data values!

This residual plot is rarely informative — after all, if there are only two outcomes and only two categories
for the predictors, some people have to lie in the two outcomes for each of the two categories of predictors.

The leverage of a point measures how extreme the set of predictors is relative to the rest of the predictors
in the study. Leverage in logistic regression depends no only this distance, but also the weight in predictions
which is a function of 7(1 — 7). Consequently, points with very small predicted (i.e. 7; < 0.15) or very
larger predicted (i.e. 7; > 0.85) actually have little weight on the fit and the maximum leverage occurs with
points where the predicted probability is close to 0.15 or 0.85.

Hosmer et al. (1991) suggest plotting the leverage of each point vs. 7; to determine the regions where
the leverage is highest. These values may not be available in your package of choice.

Hosmer et al. (1991) also suggest computing the Cook’s distance — how much does the regression coef-
ficient change if a case is dropped from the model. These values may not be available in your package of
choice.

22.10 Variable selection methods

22.10.1 Introduction

In the previous examples, there were only a few predictor variables and generally, there was only model
really of interest. In many cases, the form of the model is unknown, and some sort of variable selection
methods are required to build realistic model.

As in ordinary regression, these variable selection methods are NO substitute for intelligent thought,
experience, and common sense.

As always, before starting any analysis, check the sample or experimental design. This chapter only
deals with data collected under a simple random sample or completely randomized design. If the sample or
experimental design is more complex, please consult with a friendly statistician.

Epidemiologists often advise that all clinically relevant variables should be included regardless if statis-
tically significant or not. The rationale for this approach is to provide as complete control of confounding as
possible — we saw in regular regression that collinearity among variables can mask statistical significance.
The major problem with this approach is over-fitting. Over-fitted models have too many variables relative to
the number of observations, leading to numerically unstable estimates with large standard errors.
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I prefer a more subdued approach rather than this shotgun approach and would follow these steps to find
a reasonable model:

e Start with a multi-variate scatter-plot matrix to investigate pairwise relationships among variables. Are
there pairs of variables that appear to be highly correlated? Are there any points that don’t seem to
follow the pattern seen with the other points?

e Examine each variable separately using the Analyze->Distribution platform to check for anomalous
values, etc.

o Start with simple univariate logistic regression with each variable in turn.

For continuous variables, there are two suggested analyses. First, use the binary variable as the X
variable and do a simple two-sample ¢-test to look for differences among the means of the potential
predictors. The dot plots should show some separation of the two groups. Second, try a simple
univariate logistic-regression using the binary variable as the Y variable with each individual predictor.
Third, although it seems odd to do so, convert the binary response variable to a 0/1 continuous response
and try some of the standard smoothing methods, such a spline fit to investigate the general form of
the response. Does it look logistic? Are quadratic terms needed?

For nominal or ordinal variables, the two above analyses often start with a contingency table. Partic-
ular attention should be paid to problem cases — cells in a contingency table which have a zero count.
For example, if an experiment was testing different doses of a drug for the LDS(@ and no deaths
occurred at a particular dose. In these situations, the log-odds of success are either +co which is
impossible to model properly using virtually any standard statistical package@ If there are cells with
0 counts, some pooling is often required.

Looking at all the variables, which variables appear to be statistically significant? Approximately how
large are these simple effects — can the predictor variables be ranked in approximate order of univariate
importance?

e Based upon the above results, start with a model that includes what appear to be the most important
variables. As a rule of thumlﬂ include variables that have a p-value under .25 rather relying on a
stricter criteria. At this stage of the game, building a good starting model is of primary importance.

e Use standard variable selection methods, such as stepwise selection (forward, backward, combined)
or all subset regression to investigate potential models. These mechanical methods are not to be used
as a substitute for thinking! Remember that highly collinear variables can mask the importance of
each other.

If categorical variables are to be included then some care must be used on how the various indicator
variables are included. The reason for this is that the coding of the indicator variables is arbitrary and
the selection of a particular indicator variable may be artifact of the coding used. One strategy is that
all the indicator variables should be included or excluded as a set, rather than individually selecting
separate indicator variables. As you will see in the example, JMP has four different rules that could
be used.

38LD50=Lethal Dose 50th percentile — that dose which kills 50% of the subjects
39However, refer to Hosmer and Lemeshow (2000) for details on alternate approaches.
40Hosmer and Lemeshow (2000), p. 95
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e Once main effects have be identified, look at quadratic, interaction, and crossproduct terms.

e Verify the final model. Look for collinearity, high leverage, etc. Check if the response to the selected
variables are linear on the logistic scale. For example, break a continuous variable into 4 classes, and
refit the same model with these discretized classes. The estimates of the effects for each class should
then follow an approximate linear pattern.

e Cross validate the model so that artifacts of that particular dataset are not highlighted.

22.10.2 Example: Predicting credit worthiness

In credit business, banks are interested in information whether prospective consumers will pay back their
credit or not. The aim of credit-scoring is to model or predict the probability that a consumer with certain
covariates is to be considered as a potential risk.

Ifyouvisithttp://www.stat .uni-muenchen.de/service/datenarchiv/welcome_e.
html you will find a dataset consisting of 1000 consumer credits from a German bank. For each consumer
the binary response variable “creditability” is available. In addition, 20 covariates that are assumed to in-
fluence creditability were recorded. The dataset is available in the creditcheck.jmp datafile from the Sample
Program Library at http://www.stat.sfu.ca/~cschwarz/Stat-650/Notes/MyProgramsl

The variable descriptions are available at http://www.stat.uni-muenchen.de/service/
datenarchiv/kredit/kreditvar_e.html|and in the Sample Program Library.

I will assume that the initial steps in variable selection have been done such as scatter-plots, looking for
outliers etc.

This dataset has a mixture of continuous variables (such as length of time an account has been paid in
full), nominal scaled variables (such as sex, or the purpose of the credit request), and ordinal scaled variables
(such as length of employment). Some of the ordinal variables may even be close enough to interval or ratio
scaled to be usable as a continuous variables (such as length of employment). Both approaches should be
tried, particularly if the estimates for the individual categories appear to be increasing in a linear fashion.

The Analyze->Fit Model platform was used to specify the response variable, the potential covariates,
and that a variable selection method will be used:
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Fit Model

¥ [~ Model Specification
Select Columns

Pick Role Variables

Personality:

il Credit-worthy

A outStandingBalance
A LengthOutStandingB
il Repayment

il CreditPurpase

A RequestedCredit(DM
A Stocks&Bonds

A LengthEmployment
A Payment¥lncome

ik Sex+Mariage

4ll TimeCurrentAddress
il OtherAsset

A Age

il OtherCreditCards
ik TypeOfApt

Al #PrevCredit

il Occupation

A Dependents

ik Telephone

il GuestWorker

Stepwise

ik Credit-worthy

'I

Weight

Freq
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[ Help ) Run Model
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This brings up the standard dialogue box for step-wise and other variable selection methods.
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In the stepwise paradigm, the usual forward, backwards, and mixed (i.e. forward followed by a backwards

step at each iteration):

[~|Stepwise Fit
Response: Credit-worthy
¥ Stepwise Regression Control

Prob to Enter 0.2 SD\ “Enter All
Prob to Leave 0.100 —
Direction: Forward ( Remove All )
Rules: Backward

li Step ) (Make MﬂdEl)

In cases where variables are nominally or ordinally scales (and discrete), JMP provides a number of way
to include/exclude the individual indicator variables:

[~|Stepwise Fit
Response: Credit-worthy
¥ Stepwise Regression Control

Prob to Enter 0.2 5[]\ “Ertar Al
Prob to Leave 0.100 T
Direction: Farward ¥ £ pemove All :j

———  Restrict
( Goi tep :“J (Make Mudel)

Mo Rules
¥ Cu rrent_; Whole Effects

For example, consider the variable Repayment that had levels 0 to 4 corresponding from O=repayment prob-
lems in the past, to 4=completely satisfactory repayment of past credit. JMP will create 4 indicator variables
to represent these 5 categories. These indicator variables are derived in a hierarchical fashion:
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Repayment{0&1-2&3&4}
Repayment{0-1}
Repayment{Z&3-4}
Repayment{Z-3}

o0 ao
Lt Pl Pl

' |
= 5
= 5
= 5

The first indicator variable, splits the classes in such a way to maximize the difference between the proportion
of credit worthiness between the two parts of the split. This corresponds to grouping levels 0 and 1 vs. levels
2, 3, and 4. The next indicator variables then split the splits, again, if possible, to maximize the difference
in the credit worthiness between the two parts of the split. [If the split is of a pair of variables, there is
no choice in the split.] This corresponds to splitting the 0&1 categories into another indicator variable that
distinguishes category O from 1. The 2&3&4 class is split into two sub-splits corresponding to categories
2&3 vs. category 4. Finally, the 2&3 class is split into an indicator variable differentiating categories 2 and
3.

Now the rules for entering effects correspond to :

e Combined When terms enter the model, they are combined with all higher terms in the hierarchy and
tested as a group to enter or leave.

e Restrict Terms cannot be entered into the model unless terms higher in the hierarchy are already
entered. Hence the indicator variable that distinguishes categories 0 and 1 in the repayment variable
cannot enter before the indicator variable that contrasts 0&1 and 2&3&4.

e No Rules Each indicator variable is free to enter or leave the model regardless of the presence or
absence of other variables in the set.

e Whole Effects All indicator variable in a set must enter or leave together as a set.

The Combined or Whole Effects are the two most common choices.

This platform also supports all possible subset regressions:
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v B Stanwica Fit

Script

“Probto Enter | 0.250 @ ——————
ro r (" Enter All )

Prob to Leave 0.100

Direction: Forward ¥ ( Remove-Adl )
Rules: Combine hJ

( Co :"J ( Stop :“J ( Step :“J (Hake Mudel}

This should be used cautiously with a large number of variables.

Because it is computationally difficult to fit thousands of models using maximum likelihood methods
for each of the potential new variables that enter the model, a computationally simpler (but asymptotically
equivalent) test procedure (called the Wald or score test) is used in the table of variables to enter or leave. In
a forward selection, the variable with the smallest p-value or the largest Wald test-statistic is chosen:

L e 5 ¥ P e g e T u  Luuow

i ] OutStandingBalance -0.6698197 1 111.0744 0.0000

Once this variable is chosen, the current model is refit using maximum likelihood, so the report in the Step
History may show a slightly different test statistics (the L-R ChiSquare) than the score statistic and the
p-value may be different.

¥ Step History

Step Parameter Action L-R ChiSguare "Sig Prob” RSguare
1 OutstandingBalance Entered 128.8683 Q.0000 0.1055

The stepwise selection continues.
In a few steps, the next variable to enter is the indicator variable that distinguishes categories 2&3 and

4. Because of the restriction on entering terms, if this indicator variable is entered, the first cut must also be
entered. Hence, this step actually enters 2 variables and the number of predictors jumps from 3 to 5:
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0 @ Repayment{0&1-2&3&4} 0.59801776 2 28.71279 0.0000
0 Repayment{0-1} 0 1 0.084819 0.7709
0 Repayment{2&3-4} 0.32180792 1 11.56724 0.0007

¥ Step History

Step Parameter Action L-R ChiSquare "Sig Prob” RSguare p
1 QutstandingBalance Entered 128.8683 0.0000 0.1055
2 LengthOutStandingBalance Entered 39.40798 0.0000 0.1377
3 Repayment{2&3-4} Entered 30.1085 0.0000 0.1624

In a few more steps, some of the credit purpose variables are entered, again as a pair.

The stepwise continues for a total of 18 steps.

As before, once you have identified a candidate model, it must be fit and examined in more detail. Use
the Make Model button to fit the final model. Note that JMP must add new columns to the data tables
corresponding to the indicator variables created during the stepwise report. These can be confusing to the
novice, but just keep in mind that any set of indicator variables is somewhat arbitrary.
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8eoce6

Stepped Model

¥ [~ Model Specification
Select Columns

Pick Role Variables

Personality: | Nominal Logistic

il Credit-worthy rp
A OutStandingBalan
A LengthOutStandir
il Repayment

il CreditPurpase

A RequestedCredit(l
A Stocks&Bonds

A LengthEmploymel
A Payment¥lncome
ik Sex+Mariage

dll TimeCurrenmddr-L
il OtherAsset

A Age

il OtherCreditCards
ik TypeOfApt

Al #PrevCredit

il Occupation

A Dependents

ik Telephone

il GuestWorker

| e

=
a
2
P

4

ik Credit-worthy
optional

Weight optional Numeric e

Freq optional Numeric

=]
-

optional

Construct Model Effects

Add
Cross

Nest

-
88%
2 5@
- O m
gE®
=)

=
o
3
=
o]
=
[a]
1]
b=
=

OutsStandingBalance
LengthQutStandingBalance

Repayment{2&3-4}
CreditPurpose{6&10&085&498482-3&1&8]
CreditPurpose{6&10&0&5-9&48&2]
CreditPurpose{6&10-0&5}
CreditPurpose{6-10}
CreditPurposei{3-1&8}

The model fit then has separate variables used for each indicator variable created:
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¥ Parameter Estimates
Term Estimate Std Error ChiSquare Prob=Chi5Sqg
Intercept -0.8269838 0.5541132 2.23 0.1356
QutStandingBalance -0.5698144 0.0721025 62.45 <, 0001*
LengthOutStandingBalance 0.02594712 0.0087179 B.86 0.0029*
Repayment{0&1-28&3&4} 0.55823628 0.1440614 15.02 0.0001*
Repayment{2&3-4} 0.31503929 0.1034513 9.27 0.0023*
CreditPurpose{6&10&0&54984 82 -3&14&8} 0.40119633 0.1077188 13.87 0.0002*
CreditPurpose{6&10&0&5-9&4&2} 0.20511218 0.1303104 2.48 0.1155
CreditPurpose{6&10-0&5} -0.2479297 0.2132879 1.35 0.2451
CreditPurpose{6-10} 0.68290115 0.3980495 2.94 0.0862
CreditPurpose{3- 188} 0.36017088 0.1788359 4.06 0.0440*
RequestedCredit(DM) 0.00012792 4.1535e-5 9.48 0.0021*
Stocks&Bonds -0.2515152 0.0603091 17.39 =<, 0001*
LengthEmployment -0.0979457 0.0739886 1.75 0.1856
Payment®¥lncome 0.31828886 0.083B418 14.41 0.0001*
Sex+Mariage{1&2-4&3} 0.18877483 0.0984243 3.68 0.0551
Sex+Mariage{4-3} 0.18660451 0.148697 1.57 0.2095
TimeCurrentAddress{1-2&3 &4} -0.2716612 0.1278759 4.51 0.0336*
TimeCurrentAddress{2-3&4} 0.14831206 0.0985035 2.27 0.1322
Age -0.0096947 0.0080579 1.45 0.2289
OtherCreditCards{1&2-3} 0.22450976 0.1057489 451 0.0337*
TypeOfApt{3&1-2} 0.21262373 0.0944488 5.07 0.0244*
Telephone[1] 0.12500096 0.0913749 1.87 0.1713
GuestWorker[1] 0.74866893 0.3093471 5.86 0.0155*
For log odds of 0/1

T —

The log-odds of NOT repaying the loan is computed (see the bottom of the estimates table). Do the coeffi-
cient make sense?

Can some variables be dropped?

Pay attention to how the indicator variables have been split. For example, do you understand what terms
are used if the borrower intends to use the credit to do repairs (CreditPurpose value =6)?

Models that are similar to this one should also be explored.

Again, just like in the case of ordinary regression, model validation using other data sets or hold-out
samples should be explored.

22.11 Model comparison using AIC

Sorry, to be added later.
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22.12 Final Words

22.12.1 Two common problems

Two common problems can be encountered with logistic regression.

Zero counts

As noted earlier, zero counts for one category of a nominal or ordinal predictor (X) variable are problematic
as the log-odds of that category then approach +oo which is somewhat difficult to model.

One simplistic approach is that similar to the computation of the empirical logistic estimate — add 1/2n
to each cell so that the counts are no longer-integers, but most packages will deal with non-integer counts
without problems.

If the zero counts arise from spreading the data over too many cells, perhaps some pooling of adjacent
cells is warranted. If the data are sufficiently dense that pooling is not needed, perhaps this level of the
variable can be dropped.

Complete separation

Tronically, this is a problem because the logistic models are performing too well! We saw an example of this
earlier, when the fitness data could predict perfectly the sex of the subject.

This is a problem, because not the predicted log-odds for the groups must again be +co. This can only
happen if some of the estimated coefficients are also infinite which is difficult to deal with numerically.
Theoretical considerations show that in the case of complete separation, maximum likelihood estimates do
not exist!

Sometimes this complete separation is an artifact of too many variables and not enough observations.
Furthermore, it is not so much a problem of total observations, but also the division of observations between
the two binary outcomes. If you have 1000 observations, but only 1 “success”, then any model with more
than a few variables will be 100% efficient in capturing the single success — however, it is almost certain to
be an artifact of the particular dataset.

(©2012 Carl James Schwarz 1 704 December 21, 2012



CHAPTER 22. LOGISTIC REGRESSION

22.12.2 [Extensions

Choice of link function

The logit link function is the most common choice for the link function between the probability of an
outcome and the scale on which the predictors operate in a linear fashion.

However, other link functions have been used in different situations. For example, a log-link (log(p)),
the log-log link (log(—log(p))), the complementary log-link (log(—log(1 — p))), the probit function (the
inverse normal distribution), the identity link (p) have all been proposed for various special cases. Please
consult a statistician for details.

More than two response categories

Logistic regression traditionally has two response categories that are classified as “success” or “failure”.
It is possible to extend this modelling framework to cases where the response variable has more than two
categories.

This is known as multinomial logistic regression, discrete choice, polychotomous logistic or polytomous
logistic model, depending upon your field of expertise.

There is a difference in the analysis if the responses can be ordered (i.e. the response variable takes an
ordinal scale), or remain unordered (i.e. the response variable takes an nominal scale).

The basic idea is to compute a logistic regression of each category against a reference category. So a
response variable with three categories is translated into two logistic regressions where, for example, the
first regression is category 1 vs. category O and the second regression is category 2 vs. category 0. These
can be used to derive the results of category 2 vs. category 1. What is of particular interest is the role of the
predictor variables in each of the possible comparison, e.g. does weight have the same effect upon mortality
for three different disease outcomes.

Consult one of the many book on logistic regression for details.

Exact logistic regression with very small datasets

The methods presented in this chapter rely upon maximum likelihood methods and asympototic arguments.
In very small datasets, these large sample approximations may not perform well.

There are several statistical packages which perform exact logistic regression and do not rely upon
asymptotic arguments.

A simple search of the web brings up several such packages.
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More complex experimental designs

The results of this chapter have all assumed that the sampling design was a simple random sample or that
the experiment design was a completely randomized design.

Logistic regression can be extended to many more complex designs.

In matched pair designs, each “success” in the outcome is matched with a randomly chosen “failure”
along as many covariates as possible. For example, lung cancer patients could be matched with healthy
patients with common age, weight, occupation and other covariates. These designs are very common in
health studies. There are many good books on the analysis of such design.

Clustered designs are also very common where groups of subjects all receive a common treatment. For
example, classrooms may be randomly assigned to different reading programs, and the success or failure
of individual students within the classrooms in obtaining reading goals is assessed. Here the experimental
unit is the classroom, not the individual student and the methods of this chapter are not directly applicable.
Several extensions have been proposed for this type of “correlated” binary data (students within the same
classroom are all exposed to exactly the same set of experimenal and non-experimental factors). The most
common is known as Generalized Estimating Equations and is described in many books.

More complex experimental designs (e.g. split-plot designs) can also be run with binary outcomes. These
complex designs require high power computational machinery to analyze.

22.12.3 Yet to do

- examples - dov’s example used in a comprehensive exam in previous years This is the end of the chapter
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